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Internet

Microscopic view (“design”)
IP/TCP, routing protocols
Routers
Per-ISP router-level topologies

Macroscopic view (“non-design”)
Global AS-level topology is a cumulative result of local, decentralized, 
and rather complex interactions between AS pairs
Surprisingly, in 1999, it was found to look completely differently than 
engineers had thought

It is not a grid, tree, or classical random graph
It shares all the main features of topologies of other complex networks

scale-free (power-law) node degree distributions (P(k) ~ k -γ, γ ∈ [2,3])
strong clustering (large numbers of 3-cycles)

The big problem is that “design” has now to deal with “non-
design”

Routing protocols have to find and promptly update
paths to all destinations in the Internet





Routing practice

Global (DFZ) routing tables
300,000 prefix entries (and growing)
30,000 ASs (and growing)

Routing overhead/convergence
BGP updates

2 per second on average
7000 per second peak rate

Convergence after a single event can take up to tens of 
minutes

Problems with design?
Yes and no



Routing theory

There can be no routing algorithm with the number 
of messages per topology change scaling better than 
linearly with the network size in the worst case
Small-world networks are this worst case

Is there any workaround?Is there any workaround?
If topology updates/convergence is so expensive, If topology updates/convergence is so expensive, 
then may be we can route without them, i.e., without then may be we can route without them, i.e., without 
global knowledge of the network topology?global knowledge of the network topology?
Let us look at the existing systemsLet us look at the existing systems



Navigability of complex networks

In many (if not all) existing complex 
networks, nodes communicate without any 
global knowledge of network topologies; 
examples:

Social networks
Neural networks
Cell regulatory networks

How is this possible???



Hidden metric space explanation

All nodes exist in a metric space
Distances in this space abstract node similarities

More similar nodes are closer in the space
Similarities are defined by network-specific node 
attributes and are often based on/related to the 
community structure

The more communities in common, the more similar the 
two nodes

Network consists of links that exist with probability 
that decreases with the hidden distance

More similar/close nodes are more likely to be connected



Hidden schizophrenia

All nodes exist in “two places at once”:
network
hidden metric space

There are two metric distances between 
each pair of nodes: observable and hidden:

hop length of the shortest path in the network
distance in the hidden space



Greedy routing (Kleinberg)

To reach a destination, each node forwards 
information to the one of its neighbors that 
is closest to the destination in the hidden 
space



Hidden space visualized



Questions raised by the approach

What is the hidden space?
What are the node positions in it?
What is the connection probability?
How efficient is the greedy routing process?

How often greedy-routing paths get stuck at nodes that 
do not have any neighbors closer to the destination than 
themselves
How closely greedy-routing paths follow the shortest 
paths in the network

What topologies are navigable, i.e., congruent 
w.r.t. greedy routing, i.e., make it efficient?



Hidden spaces are metric spaces

Using the simplest metric space (a circle), 
we show that

the triangle inequality in hidden spaces
transitivity of being similar/close

explains
strong clustering in real networks

transitivity of being connected

It also explains their self-similarity



Navigability mechanisms

More navigable networks are networks with
more heterogeneous node degree distributions

more hubs

stronger clustering
stronger influence of hidden distances on links
stronger congruency between hidden geometries and observed 
topologies 
stronger congruency between greedy and shortest paths

Greedy routing paths follow navigable path 
pattern



Hidden geometries

What hidden geometries are maximally 
congruent with the navigability mechanisms 
of the observed complex network 
topologies?



Hidden metric spaces are hyperbolic

Network nodes can often be classified 
hierarchically, at least approximately
Hierarchies are tree-like structures
Hyperbolic geometry is the geometry of 
tree-like structures

Formally: trees embed almost isometrically in 
hyperbolic spaces, not in Euclidean ones



Hierarchies in real networks

Community structure in Wikipedia:
editors are nodes; articles are communities
the more articles you edited, the closer to the top you are
similarity between two editors is defined by how many 
articles they both edited

Hierarchies of overlapping sets
map nodes to sets of communities they are members of
define the similarity between two nodes as a measure of 
the overlap of their community sets





Hyperbolic geometry rising

The mapping between balls in Rd B(x,r) and 
points α = (x,r) in Hd+1 satisfies

If |α-α'| § C, then there exist k(C) s.t. k-1 § r/r' 
§ k and |x-x'| § k r
If |x-x'| § k r and k-1 § r/r' § k, then there exist 
C(k) s.t. |α-α'| § C



Hyperbolic geometry defined

Geometry in which through a point not 
belonging to a line passes not one but 
infinitely many lines parallel to the given 
line



Hyperbolic art



Hyperbolic tessellation



Geometry properties



Main hyperbolic property

The volume of balls and surface of spheres grow 
with their radius r as

eαr

where α = (-K)1/2(d-1), K is the curvature and d is 
the dimension of the hyperbolic space
The numbers of nodes in a tree within or at r hops 
from the root grow as

br

where b is the tree branching factor
The metric structures of hyperbolic spaces and 
trees are essentially the same (α = ln b)



Hidden space in our model

Hyperbolic disc of radius R, where
N = κ eR/2, N is the number of nodes in the 
network and κ controls its average degree

Average degree is fixed (by κ) to the same 
value (~6, like in many real networks) for all 
modeled networks 



Node distribution

Number of nodes n(r) located at distance r
from the disc center is

n(r) ~ eαr 

where α = 1 corresponds to the uniform 
node distribution in the hyperbolic plane of 
curvature -1



Connection probability

Connect each two nodes if the distance 
between them is less than or equal to R



Average node degree at distance r
from the disc center

r

R R



Average node degree at distance r
from the disc center

For α = 1, we obtain a terse but exact expression

For other α:
k(r) ~ e -βr

where
β = α if α § ½
β = ½ otherwise



Node degree distribution

Is given by the combination of exponentials 
to yield a power law

P(k) ~ k -γ
where
γ = 1 + α/β =

2 if α § ½; or
2 α + 1 otherwise

The uniform node distribution in the plane 
(α = 1) yields γ = 3



Node degree distribution:
theory vs. simulations



Node degree distribution:
model vs. Internet



Clustering:
model vs. Internet



Visualization of a modeled network



Successful greedy paths



Unsuccessful greedy paths



Percentage of successful paths



Multiplicative average stretch



Robustness of greedy routing w.r.t. 
network dynamics

As network topology changes, the greedy 
routing efficiency characteristics deteriorate 
very slowly
For example, for γ § 2.5, removal of up to 
10% of the links from the topology 
degrades the percentage of successful path 
by less than 1%



Hyperbolic geometry
vs. scale-free topology





In summary

Scale-free networks are congruent w.r.t. hidden 
hyperbolic geometries

Greedy paths follow shortest paths that approximately 
follow shortest hidden paths, i.e., geodesics in the 
hyperbolic space

This congruency is robust w.r.t. network 
dynamics/evolution

There are many shortest paths between the same source 
and destination that satisfy the above properties
If some of them go away, others remain available, and 
greedy routing still finds them 



Conclusion

Hidden hyperbolic metric spaces explain, 
simultaneously, the two main topological 
characteristics of complex networks

scale-free degree distributions
strong clustering

Greedy routing mechanism in these settings may 
offer virtually infinitely scalable routing 
algorithms for future communication networks

Zero communication costs (no routing updates!)
Constant routing table sizes (coordinates in the space)
No stretch (all paths are shortest, stretch=1)



Directions for future research

Find the structure of hidden metric spaces underlying real 
networks

measure similarities based on intrinsic, network-specific node 
attributes (instead of similarities reconstructed from the network 
topology, e.g., by community detection algorithms)
obtain a finite metric space
find the most appropriate (least distorted) embeddings for it into 
continuous model spaces

Find the coordinates of nodes in hidden spaces
given a model space, can nodes “know” (compute) their positions 
in it using only local information???

Applications in routing, search, recommender systems, 
systems biology, cognitive science, protein folding, etc.
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