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What the Internet does

The Internet was designed for and exists to
transfer information packets from A to B,
where A and B are any two Internet-
Protocol- (IP-)talking devices



IP packet format



IP addresses

A = 161.116.80.85
B = 192.172.226.78



IP routes
traceroute 192.172.226.78

  1    <1 ms    <1 ms    <1 ms  161.116.80.254
  2     *        *        *     Request timed out.
  3    <1 ms    <1 ms    <1 ms  161.116.221.14
  4     1 ms    <1 ms    <1 ms  192.168.3.250
  5     8 ms     1 ms     1 ms  84.88.18.5
  6     1 ms    <1 ms    <1 ms  130.206.202.29
  7    15 ms    15 ms    15 ms  130.206.250.25
  8    15 ms    15 ms    15 ms  130.206.250.2
  9    16 ms    15 ms    15 ms  62.40.124.53
 10    37 ms    37 ms    37 ms  62.40.112.25
 11    50 ms    45 ms    45 ms  62.40.112.22
 12   138 ms   138 ms   138 ms  62.40.125.18
 13   152 ms   152 ms   152 ms  64.57.28.6
 14   175 ms   175 ms   175 ms  64.57.28.43
 15   207 ms   217 ms   207 ms  64.57.28.44
 16   209 ms   208 ms   209 ms  137.164.26.132
 17   215 ms   215 ms   215 ms  137.164.25.5
 18   215 ms   215 ms   215 ms  137.164.27.50
 19   215 ms   215 ms   215 ms  198.17.46.56
 20   215 ms   215 ms   215 ms  192.172.226.78
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Internet topology

Cumulative result of local, decentralized, and
rather complex interactions between AS pairs
Surprisingly, in 1999, it was found to look
completely differently than engineers had thought:
it shares all the main features of topologies of
other complex networks (scale-free degree
distributions and strong clustering)
Routing protocols have to find and update paths to
destinations through it



IP routing

Intradomain (Interior Gateway Protocols (IGPs))
 routing within an Autonomous System (AS)
 protocols:

 Open Shortest Path First (OSPF)
 Intermediate System to Intermediate System (ISIS)

 Links State (LS) routing protocols
Interdomain (Exterior Gateway Protocols (EGPs))
 routing between Autonomous Systems (ASs)
 protocols:

 Border Gateway Protocol (BGP)
 Path Vector (PV) routing protocol



BGP

Each AS advertises IP addresses that it has
 AS 13041 (University of Barcelona) advertises:

161.116.0.0 – 161.116.255.255 (161.116.0.0/16)
All neighboring ASs receiving this advertisement re-
advertise them to their neighbors after pre-pending
their AS numbers
The result is that each AS A has a routing entry for
161.116.0.0/16 which looks like:
161.116.0.0/16: AS X1, AS X2, …, AS 766,
where X1 is a neighbor of A, X2 is a neighbor of X1,
and so on.



AS relationships and BGP policies

Each AS link is the relationship (i.e., business, contractual agreement) between the
two ASs
There are roughly three types of such relationships
 customer-provider (c2p)
 peer-peer (p2p)
 sibling-sibling (s2s)

Standard routing policies: to reach a destination, the route preference order is
 routes via customers
 routes via peers
 routes via providers

Standard route re-advertisement policies
 re-advertising to provider or peer, an AS advertises only its own IP addresses and IP

routes learnt from its customers
 re-advertising to customer or sibling, an AS advertises everything

BGP advertisement policy combinations vs. AS relationships
 asymmetric combination: c2p
 symmetric combinations: p2p and s2s



Hierarchy of valid paths

Valid paths consists of the following potions
 uphill: zero or more links from customer to provider
 pass: zero or one link from peer to peer
 downhill: zero or more links from provider to customer
 any number of sibling links anywhere in the path

Given a collection of paths observed in BGP
routing tables, trying to assign relationships to AS
links that minimize the number of invalid paths is
a way to infer AS relationships



Simple routing event
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BGP dynamics

BGP updates
 2 per second on average
 7000 per second peak rate

Convergence after a single event can take
up to tens of minutes



Routing theory

There can be no routing algorithm with the number
of messages per topology change scaling better than
linearly with the network size in the worst case
Small-world networks are this worst case

Is there any workaround?Is there any workaround?
If topology updates/convergence is so expensive,If topology updates/convergence is so expensive,
then may be we can route without them, i.e., withoutthen may be we can route without them, i.e., without
global knowledge of the network topology?global knowledge of the network topology?



Milgram’s experiments

Settings: random people were asked to forward a letter to a
random individual by passing it to their friends who they
thought would maximize the probability of letter moving
“closer” to the destination
Results: surprisingly many letters (30%) reached the
destination by making only ~6 hops on average
Conclusion:
 People do not know the global topology of the human

acquaintance network
 But they can still find (short) paths through it



Hidden metric space explanation

All nodes exist in a metric space
Distance in this space abstract node similarities
Network consists of links that exist with probability that
decreases with the hidden distance
More similar/close nodes are more likely to be connected
The result is that all nodes exist in “two places at once”:
 a network
 a hidden metric space

So that there are two distances between each pair of nodes
 the length of shortest path between them in the network
 hidden distance



Greedy routing (Kleinberg)

To reach a destination, each node forwards
information to the one of its neighbors that
is closest to the destination in the hidden
space



Hidden space visualized



Questions raised by the approach

What is the hidden space?
What are the node positions in it?
What is the connection probability?
How efficient is the greedy routing process?
 How often greedy-routing paths get stuck at nodes that

do not have any neighbors closer to the destination than
themselves

 How closely greedy-routing paths follow the shortest
paths in the network



Hidden spaces are metric spaces

Using the simplest metric space (a circle),
we show that
 the triangle inequality in hidden spaces

 transitivity of being similar/close
explains

 strong clustering in real networks
 transitivity of being connected

It also explains their self-similarity



Navigability mechanisms

More navigable networks are networks with
 more heterogeneous node degree distributions

 more hubs

 stronger clustering
 stronger influence of hidden distances on links
 stronger congruency between hidden geometries and observed

topologies
 stronger congruency between greedy and shortest paths

What geometries are maximally congruent with
scale-free network topologies?



Hidden metric spaces are hyperbolic

Network nodes can often be hierarchically
classified
Hierarchies are (approximately) trees
Trees embed isometrically in hyperbolic
spaces



Hyperbolic geometry

Geometry in which through a point not
belonging to a line passes not one but
infinitely many lines parallel to the given
line



Poincaré disc model



Tessellation and tree embedding



Tessellation art



Geometry properties



Main hyperbolic property

The volume of balls and surface of spheres grow
with their radius r as

eαr

where α = (-K)1/2(d-1), K is the curvature and d is
the dimension of the hyperbolic space
The number of nodes in a tree within or at r hops
from the root grow as

br

where b is the tree branching factor



Hidden space in our model

Hyperbolic disc of radius R, where
N = κ eR/2, N is the number of nodes in the
network and κ controls its average degree



Node distribution

Number of nodes n(r) located at distance r
from the disc center is

n(r) ~ eαr

where α = 1 corresponds to the uniform
node distribution in the hyperbolic plane of
curvature -1



Connection probability

Connected each two nodes if the distance
between them is less than or equal to R



Average node degree at distance r
from the disc center
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Average node degree at distance r
from the disc center

For α = 1, we obtain a terse but exact expression

For other α:
k(r) ~ e-βr

where
β = α if α ≤ ½
β = ½ otherwise



Node degree distribution

Is given by the combination of exponentials
to yield a power law
 P(k) ~ k-γ

where
γ = 1 + α/β =

2 if α ≤ ½; or
2 α + 1 otherwise

The uniform node distribution in the plane
(α = 1) yields γ = 3



Node degree distribution in modeled
and real networks



Degree correlations in modeled and
real networks



Clustering in modeled and real
networks



Visualization of a modeled network



Successful greedy paths



Unsuccessful greedy paths



Percentage of successful paths



Multiplicative stretch



Robustness of greedy routing w.r.t.
network dynamics

As network topology changes, the greedy
routing efficiency characteristics deteriorate
very slowly
For example, for γ ≤ 2.5, removal of up to
10% of the links from the topology
degrades the percentage of successful path
by less than 1%



In summary

Scale-free networks are congruent w.r.t.
hidden hyperbolic geometries
This congruency is robust w.r.t. network
dynamics/evolution



Conclusion

Hidden hyperbolic metric spaces explain,
simultaneously, the two main topological
characteristics of complex networks
 scale-free degree distributions
 strong clustering

Greedy routing mechanism in these settings may
offer virtually infinitely scalable routing
algorithms for future communication networks



Problems to solve

Find the exact structure of hidden metric
spaces underlying real networks
Find the coordinates of nodes in them


