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Motivation

One of the most serious scaling limitations with the
existing Internet architecture: the communication
overhead of routing protocols (RFC4984, IAB 2007)
Internet routing tables
 300,000 prefix entries (and growing)

Routing overhead/convergence
 BGP updates

 2 per second on average
 7000 per second peak rate

 Convergence after a single event can take up to tens of
minutes
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Motivation (cont.)

Routing theory: There can be no routing algorithm with the
number of messages per topology change scaling better than
linearly with the network size, in the worst case of a network
topology (Krioukov et al. CCR 2007)
Complex/scale-free networks, like the Internet, (power-law
degree distribution P(k)~1/kγ, strong clustering) are this
worst case

    Is there any workaround?Is there any workaround?
    If topology updates/convergence is so expensive, then may beIf topology updates/convergence is so expensive, then may be

we can route without them, i.e., without global knowledge of thewe can route without them, i.e., without global knowledge of the
network topology?network topology?

  Many networks in nature (e.g. biological networks) can doMany networks in nature (e.g. biological networks) can do
this! But how isthis! But how is this this possible? possible?
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Milgram’s experiments (Sociometry,
1969)

Settings: random people were asked to forward a
letter to a random individual by passing it to their
friends who they thought would maximize the
probability of letter moving “closer” to the
destination
Results: surprisingly many letters (30%) reached
the destination by making only ~6 hops on
average
Conclusion:
 People do not know the global topology of the human

acquaintance network
 But they can still find (short) paths through it
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Hidden metric space explanation
(J. Kleinberg, Nature 2000)

All nodes exist in a Euclidean (hidden) metric
space
Distances in this space abstract node similarities
 More similar nodes are closer in the space

Network consists of links that exist with
probability that decreases with the hidden
distance
 More similar/close nodes are more likely to be

connected
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Greedy forwarding (J. Kleinberg)

To reach a destination, each node forwards
the message/packet to the neighbor that is
closest to the destination in the hidden
space.
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Hidden space visualized
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Greedy forwarding (cont.)

Works well (high probability of successfully finding the
destination, shortest paths) only if the network topology is
congruent with the hidden space
Kleinberg’s model based on Euclidean underlying space
produces only k-regular graphs
But most real networks, including the Internet, are scale-free
(power-law degree distribution, strong clustering)

I. What are the metric spaces underlying real networks?

II. What is the efficiency of greedy forwarding in these networks?

Questions raised:
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Hidden metric spaces underlying real
networks are hyperbolic

Network nodes can often be classified
hierarchically, at least approximately (Watts
et al. Science 2002)
Hierarchies are tree-like structures
Hyperbolic geometry is the geometry of
tree-like structures
 Formally: trees embed almost isometrically in

hyperbolic spaces, not in Euclidean ones
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Main hyperbolic property (the
exponential expansion of space)

Circle lengths and disc areas grow with their
radius R as

~ eR

The numbers of nodes in a tree at or within R hops
from the root grow as

~ bR

where b is the tree branching factor
The metric structures of hyperbolic spaces and
trees are essentially the same



13

Hyperbolic geometry properties



14

Synthetic networks embedded in
hyperbolic spaces

What network topologies emerge in the
simplest possible settings involving hidden
hyperbolic metric spaces?



15

The model

Let N  be the number of nodes in the network

Fix the hyperbolic disc radius to R according to N =!eR /2

Constant !  controls the average degree

1.

2.

!

Uniformly distribute nodes in the disc, by assigning to each node two coordinates: 

(i) Angular !  uniformly distributed in [0, 2" ]

(ii) Radial r with density #(r) =
sinhr

coshR $1
% e(r$R)! e

r

(Recall: circle length is 2" sinhr)

!

Non-uniform node distribution if !(r) =
" sinh"r

cosh"R #1
$ "e" (r#R)! e

"r
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The model (cont.)

Connect each pair of nodes if their hyperbolic distance d ! R

d = cosh"1 cosh(r)cosh(r ') " sinh(r)sinh(r ')cos(#$)( )

3.
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Average node degree at distance r
from the disc center
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Node degree distribution

!

It is given by the combination of exponentials to yield a power law

Since k(r) !  e!"r , r(k)! !
1

"
ln k,  and since #(r) ~ e$r :

P(k) % #[r(k)] r '(k) ! k
!& ,

where & = 1+
$

"
=

                 2 if $ ' 1/2; or

                 2$+1 otherwise

Thus, we can create networks with any &  in [2, 3] like the vast

majority of complex networks (AS Internet: & % 2.1)
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Clustering (number of 3-cycles)

Our modeled networks also have strong clustering (triangle inequality)

But previous connection probability does not allow tuning it

It yields higher clustering than in the Internet

We solve this problem by introducing the following connection probability:

p(d) =
1

1+ e
1

2T
(d!R)

, where T  a parameter that tunes clustering

T " 0 p(d) becomes the step fucntion (clustering is maximized)

T " 1 clustering goes to 0
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Model vs. AS Internet

 We will compare the dK-properties (Mahadevan
et al. ACM SIGCOMM 2006)

- Degree distribution
- Clustering
- Degree correlations

 Reproducing these also reproduces a
number of other topological properties
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Model vs. AS Internet
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Greedy forwarding efficiency

Two simple algorithms
- Original Greedy Forwarding (OGF): select

closest neighbor to destination, drop the packet
if no one closer than current hop

- Modified Greedy Forwarding (MGF): select
closest neighbor to destination, drop the packet
if a node sees it twice
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Percentage of successful paths
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Average and maximum stretch
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Hyperbolic geometry
vs. scale-free topology
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Robustness of greedy forwarding
w.r.t. network dynamics

Two scenarios
- Scenario 1: Randomly remove a percentage of

links and compute the new success ratio
- Scenario 2: Remove a link and compute the

precentage of paths that were going through it
and are still successful (have found a by-pass)
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Percentage of successful paths
(dynamic networks, scenario 1)
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Percentage of successful paths
(dynamic networks, scenario 2)
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In summary

Scale-free networks are congruent w.r.t. hidden
hyperbolic geometries
 Greedy paths follow shortest paths

This congruency is robust w.r.t. network
dynamics
 There are many shortest paths between the

same source and destination
 If some of them go away, others remain

available, and greedy forwarding still finds
them
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Conclusion

Hidden hyperbolic metric spaces explain,
simultaneously, the two main topological
characteristics of complex networks
 scale-free degree distributions
 strong clustering

Greedy routing mechanism in these settings may
offer virtually infinitely scalable routing
algorithms for future communication networks
 Zero communication costs (no routing updates!)
 Constant routing table sizes (coordinates in the space)
 No stretch (all paths are shortest, stretch=1)
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Directions for future research

Given a scale-free network, how do we find its
coordinates in the space using only local
information???
Applications to network overlays, e.g. P2P


