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Complex networks

Technological
Internet
Transportation
Power grid

Social
Collaboration
Trust
Friendship

Biological
Gene regulation
Protein interaction
Metabolic
Brain

Can there be anything 
common to all these 
networks???

Naïve answer:
Sure, they must be complex
And probably quite random
But that’s it

Well, not exactly!







Internet

Heterogeneity:
distribution P(k)
of node degrees k:

Real: P(k) ~ k-g

Random: P(k) ~ lke-l/k!

Clustering:
average probability that
node neighbors are connected:

Real: 0.46
Random: 6.8μ10-4



Internet vs. protein interaction



Common structure of complex networks:
Strong heterogeneity and clustering

Network Exponent of the
degree distribution

Average 
clustering

Internet 2.1 0.46

Air transportation 2.0 0.62

Actor collaboration 2.3 0.78

Protein interaction
S. cerevisiae

2.4 0.09

Metabolic
E. coli and S. cerevisiae

2.0 0.67

Gene regulation
E. coli and S. cerevisiae

2.1 0.09



Common function of complex networks:
Transport or signaling phenomena

Examples:
Brain
Internet
Transportation networks 
Regulatory networks
Metabolic networks
Food webs
Social networks

But in many networks, nodes do not know the 
topology of a network, its complex maze



Milgram’s experiments

Settings: random people were asked to forward a 
letter to a random individual by passing it to their 
friends who they thought would maximize the 
probability of letter moving “closer” to the 
destination
Results: surprisingly many letters (30%) reached 
the destination by making only ~6 hops on 
average
Conclusion:

People do not know the global topology of the human 
acquaintance network
But they can still find (short) paths through it



Complex networks as complex mazes

To find a path through a 
maze is relatively easy if 
you have its map
Can you quickly find a 
path if you are in the maze 
and don’t have its map?
Only if you have a 
compass, which does not 
lead you to dead ends
Hidden metric spaces are 
such compasses



Take home message

Hidden metric spaces explain common 
structure and function of complex networks



Hidden metric spaces

All nodes in a network exist in a metric space
Distances in this space abstract node similarities

More similar nodes are closer in the space
Network consists of links that exist with probability 
that decreases with the hidden distance

More similar/close nodes are more likely to be connected



Hidden space visualized



Navigation by greedy routing

To reach a destination, each node forwards 
information to the one of its neighbors that is 
closest to the destination in the hidden space



Hidden space visualized



Navigability metrics

Stretch
how much longer greedy paths are with respect 
to shortest paths in the network

Success ratio
what percentage of greedy paths reach their 
destination without getting stuck at local minima, 
i.e., nodes that do not have any neighbors closer 
to the destination than themselves



Properties to focus on

Structure
clustering
heterogeneity

Function
stretch
success ratio



Clustering

Clustering is a direct consequence of the 
triangle inequality in hidden metric spaces



Hidden space visualized



First empirical evidence:
self-similarity of clustering

Hidden metric spaces appear as the only 
reasonable explanation of one fine property 
of real networks – clustering self-similarity

Phys Rev Lett, v.100, 078701, 2008



Clustering self-similarity

Consider four networks
a real one, whose metric space we do not know
a synthetic one, with a modeled metric space underneath
randomized versions of  both networks

Degree-renormalize all four networks
Compare clustering before and after renormalization:

original networks (real and synthetic): clustering is the same
randomized networks (real and synthetic): clustering is not the same

Suggesting that as the synthetic network,
the real network also has some metric structure underneath,
which gets destroyed by randomization

Phys Rev Lett, v.100, 078701, 2008



Degree renormalization
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Clustering collapse



Modeling hidden metric spaces
the simplest way – by a circle

N nodes are randomly placed on a circle of radius
N/(2p)

so that the node density is uniform (=1) on the circle
All N nodes are assigned a random variable k,
the node expected degree, drawn from

r(k) = (g-1)k-g
Each pair of nodes is connected with probability p, 
which must be an integrable function of

c ~ Dq /(kk')
where Dq is the angular distance between nodes,
and k, k' are their expected degrees

Phys Rev Lett, v.100, 078701, 2008



The 1 model
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Properties of the 1 model

The model generates networks with
any (heterogeneous) degree distribution

by choosing different r(k)
any clustering

by choosing different p(c)
a simple metric space underneath (obviously)

so that we can study network navigability
Therefore, using the model, and having the metric 
space fixed (to 1), we may ask the question:

What combinations of degree distribution and 
clustering lead to maximum navigability?

Phys Rev Lett, v.100, 078701, 2008



Ultrasmall stretch of
ultrasmall worlds

All successful greedy paths are asymptotically 
shortest (stretch = 1) in heterogeneous 
topologies with strong clustering

In fact, this statement holds for any uniform and 
isotropic hidden space geometry
But the success ratio does depend on this geometry

Phys Rev Lett, v.102, 058701, 2009 



Success ratio in the 1 model

Nature Physics, v.5, p.74-80, 2009



Complex networks are navigable

Specific values of degree distribution and 
clustering observed in real complex networks 
correspond to the highest efficiency of greedy 
routing in the 1 model
Which implicitly suggests that complex networks 
evolve to navigable configurations
If they did not, they would not be able to function

Nature Physics, v.5, p.74-80, 2009



One caveat and one question

The maximum value of the success ratio 
observed in the 1 model is 65%
Is there a space, other than 1, that brings the 
maximum success ratio close to 100%?  

Nature Physics, v.5, p.74-80, 2009



One answer

The answer is yes!
The maximum success ratio reaches 100% 
if the hidden space is hyperbolic (2)

Phys Rev E, v.80, 035101(R), 2009 



Two facts on hyperbolic geometry

Exponential expansion of space
Distance calculations

Phys Rev E, v.80, 035101(R), 2009 





Hyperbolic distance

cosh x = cosh r cosh r' - sinh r sinh r' cos q
x º r + r' + 2 ln sin(q/2)

x º r + r' + 2 ln(q/2)

¥

r r'
q

x

Phys Rev E, v.80, 035101(R), 2009 



The 1-to-2 transformation

Change of variables from k (expected degree)
to r (radial coordinate)

k = e(R-r)/2

where R = 2 ln(N/c)
yields the radial node density

r(r) = a ea(r-R)

where
a = (g - 1) / 2

and the argument of the connection probability
c = e(x-R)/2

where x is the hyperbolic distance between nodes
Phys Rev E, v.80, 035101(R), 2009 



The other way around:
The native 2 model

The hidden space is the simplest hyperbolic space –
a disc (of radius R = 2 ln(N/c))
Distribute nodes (quasi-)uniformly on it:

the angular node density is uniform
the radial node density is exponential
(because the space is hyperbolic!)

r(r) = a ea(r-R)

Connect each pair of nodes with probability
p[c] = p[e(x-R)/2]

The resulting node degree distribution is a power law
P(k) ~ k-g

where g = 2 a + 1
Phys Rev E, v.80, 035101(R), 2009 



Two properties of the 2 model

Network heterogeneity emerges naturally as a simple 
consequence of the exponential expansion of space
in hyperbolic geometry
The choice of the Fermi-Dirac connection probability

yields the following physical interpretation:
Hyperbolic distances x are energies of the corresponding links-fermions
Hyperbolic disc radius R is the chemical potential
Clustering-controlling parameter T is the system temperature
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Phys Rev E, v.80, 035101(R), 2009 



Average node degree at distance r
from the disc center



Why navigation in 2

is more efficient than in 1 

Because nodes in the 1 model are not connected 
with probability which depends solely on the 1 

distances ~Dq
Those distances are rescaled by node degrees to
c ~ Dq /(kk') (to guarantee that k(k) = k)
These rescaled distances are hyperbolic
(after the k-to-r change of variables)
Intuitively, navigation is more efficient
if it uses more congruent distances,
i.e., those with which the network is built
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…and back to self-similarity

Degree-thresholding
renormalization is a 
homothety along the radial 
coordinate
Such homotheties are 
symmetry transformations 
in hyperbolic geometry
Self-similarity of complex 
networks proves not only 
that hidden spaces exist, 
but also that they are 
hyperbolic

PajekPajek



Why hyperbolic spaces

Nodes in complex networks can often be 
hierarchically classified

Community structure (social and biological networks)
Customer-provider hierarchies (Internet)
Hierarchies of overlapping attribute sets (all networks)

Hierarchies are (approximately) trees
Hyperbolic spaces are tree-like
(trees embed almost isometrically in them)

Phys Rev E, v.80, 035101(R), 2009 



Take home message

Hidden hyperbolic metric spaces explain the 
common structure and function of
complex networks:

Structure:
Strong clustering is a consequence of the fact that 
hyperbolic spaces are metric
Heterogeneity is a consequence of their negative curvature

Function:
Stretch is 1, i.e., all greedy paths are shortest
Success ratio is 100%, i.e., all greedy paths are successful 



Current work

We have a formal proof that stretch is 1, but we do not 
yet have a formal proof that success ratio is 100%
Mapping real networks to their metric spaces.
Two paths:

Brute force: use statistical inference techniques (e.g., MLE) 
to map a network to a model space

Requires involved manual intervention
Algorithm running times are prohibitive for large networks

Constrictive: construct a map based on
intrinsic node similarities

What node attributes to choose to compute similarities
Many similarity metrics exist. Which one to choose?



One immediate application
Succeeded in brute-force mapping the Internet to 2

Stretch is almost 1
Success ratio is almost 100%

Thus resolving long-standing scalability problems with
existing Internet routing

Existing Internet routing is based on global knowledge of the topology
If topology changes, the information about the change must be diffused 
to all the routers
Which involves enormous and ever-growing communication overhead

over-whelmed routers fail,
endangering the performance and stability of the global Internet
black holes have started appearing in the Internet already

Greedy routing does not require any global knowledge,
thus resolving the scaling limitations of routing in the Internet



Future potential applications

Upon successful mapping a network to its metric space,
we can:

provide a new perspective on community detection
instead of splitting nodes into discrete communities, we have a continuous 
measure of similarity for each two nodes – their hidden distance
“communities” are then zones of higher node density in the hidden space

improve recommender systems
based on user similarity, predict what movies (Netflix) or goods (Amazon) 
a user will like

predict what conditions lead to the appearance of undesirable 
local minima – examples of such lethal dead ends include:

cancer
protein mis-folding
brain mal-function
etc



Further details
M. Ángeles Serrano, D. Krioukov, and M. Boguñá,
Self-Similarity of Complex Networks and Hidden Metric Spaces,
Physical Review Letters, v.100, 078701, 2008
M. Boguñá, D. Krioukov, and kc claffy,
Navigability of Complex Networks,
Nature Physics, v.5, p.74-80, 2009
M. Boguñá and D. Krioukov,
Navigating Ultrasmall Worlds in Ultrashort Time,
Physical Review Letters, v.102, 058701, 2009
D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá,
Curvature and Temperature of Complex Networks,
Physical Review E, v.80, 035101(R), 2009
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