Popularity versus Similarity in Growing Networks

Fragiskos Papadopoulos

Cyprus University of Technology M. Kitsak, M. Á. Serrano, M. Boguñá, and Dmitri Krioukov CAIDA/UCSD

Caltech, February 2012

Preferential Attachment (PA)

- Popularity is attractive
- If new connections in a growing network prefer popular (high-degree) nodes, then the network has a power-law distribution of node degrees

- This result can be traced back to 1924 (Yule)

Issues with PA

- Zero clustering
- PA per se is *impossible* in real networks
 - It requires global knowledge of the network structure to be implemented
- The popularity preference should be exactly a linear function of the node degree
 - Otherwise, no power laws

One solution to these problems

- Mechanism:
 - New node selects an existing edge uniformly at random
 - And connects to its both ends
- Results:
 - No global intelligence
 - Effective linear preference
 - Power laws
 - Strong clustering
- Dorogovtsev et al., PRE 63:062101, 2001

One problem with this solution

- It does not reflect reality
- It could not be validated against growth of real networks

No model that would:

- Be simple and universal (like PA)
 - Potentially describing (as a base line) evolution of many different networks
- Yield graphs with observable properties
 - Power laws, strong clustering, to start with
 - But many other properties as well
- Not require any global intelligence
- Be validated

Validation of growth mechanism

- State of the art
 - Here is my new model
 - The graphs that it produces have power laws!
 - And strong clustering!!
 - And even X!!!
- Almost never the growth mechanism is validated *directly*
- PA was validated directly for many networks, because it is so simple

Paradox with PA validation

- Dilemma
 - PA was validated
 - But PA is impossible
- Possible resolution
 - PA is an emergent phenomenon
 - A consequence of some other underlying processes

Popularity versus Similarity

- Intuition
 - I (new node) connect to you (existing node) not only if you are popular (like Google or Facebook), but also if you are similar to me (like Tartini or free soloing) — homophily
- Mechanism
 - New connections are formed by trade-off optimization between popularity and similarity

Mechanism (growth algorithm)

- Nodes *t* are introduced one by one
 - $-t @ 1, 2, 3, \dots$
- Measure of popularity
 - Node's birth time *t*
- Measure of similarity
 - Upon its birth, node *t* gets positioned at a random coordinate θ_t in a "similarity" space
 - The similarity space is a circle
 - $-\theta$ is random variable uniformly distributed on $[0,2\pi]$
 - Measure of similarity between *t* and *s* is $\theta_{st} \otimes |\theta_s \circ \theta_t|$

Mechanism (contd.)

- New connections
 - New node *t* connects to *m* existing nodes *s*, *s* ? *t*, minimizing $s\theta_{st}$
 - That is, maximizing the product between popularity and similarity

New node t connects to m existing nodes s that minimize

 $s\theta_{st}$

$$st\frac{\theta_{st}}{2}$$
$$\ln\left(st\frac{\theta_{st}}{2}\right)$$
$$= r_s + r_t + \ln\frac{\theta_{st}}{2}$$

 $\approx x_{st}$ — the *hyperbolic* distance between *s* and *t*

New nodes connects to *m* hyperbolically closest nodes

The expected distance to the m'th closest node from t is

$$R_t = r_t - \ln \frac{2r_t}{\pi m} - \text{average degree is fixed to } 2m$$
$$R_t = r_t - \text{average degree grows logarithmically with } t$$
if j \geq 2

New node *t* is located at radial coordinate $r_t \sim \ln t$, and connects to all nodes within distance $R_t \sim r_t$ H^2

 ∂H^2

Clustering

- Probability of new connections from *t* to *s* so far $p(x_{st}) = \Theta(R_t - x_{st})$
- If we smoothen the threshold $p(x_{st}) = \frac{1}{1 + e^{\frac{x_{st} - R_t}{T}}} \xrightarrow{T \to 0} \Theta(R_t - x_{st})$
- Then average clustering linearly decreases with *T* from maximum at T = 0 to zero at T = 1
- Clustering is always zero at T > 1
- The model becomes identical to PA at T $\widehat{}$

Validation

- Take a series of historical snapshots of a real network
- Infer angular/similarity coordinates for each node
- Test if the probability of new connections follows the model theoretical prediction

Learning similarity coordinates

- Take a historical snapshot of a real network
- Apply a maximum-likelihood estimation method (e.g., MCMC) using the static hyperbolic model
- Metropolis-Hastings example
 - Assign random coordinates to all nodes
 - Compute current likelihood $L_c = \prod p(x_{ij})^{a_{ij}} [1 p(x_{ij})]^{1 a_{ij}}$

i < j

- Select a random node
- Move it to a new random angular coordinate
- Compute new likelihood L_n
- If $L_n > L_c$, accept the move
- If not, accept it with probability L_n / L_c
- Repeat

Popularity fisimilarity optimization

- Explains PA as an emergent phenomenon
- Resolves all major issues with PA
- Generates graphs similar to real networks across many vital metrics
- Directly validates against some real networks
 - Technological (Internet)
 - Social (web of trust)
 - Biological (metabolic)

PSO compared to PA

- PA just ignores similarity, which leads to severe aberrations
 - Probability of similar connections is badly underestimated
 - Probability of dissimilar connections is badly overestimated
- If the connection probability is correctly estimated, then one immediate application is *link prediction*

Link prediction

- Suppose that some network has zero temperature
- Then one can predict links with 100% accuracy!
 - Because the connection probability is either 0 or 1

Non-zero temperature

- Link prediction is worse than 100%, but it must be still accurate since the connection probability is close to the step function
- No global intelligence is required
 - At zero temperature, new nodes connect to exactly the closest nodes
 - Non-zero temperature models reality where this hyperbolic proximity knowledge cannot be exact, and where it is mixed with errors and noise
- PA is an infinite-temperature regime with similarity forces reduced to nothing but noise

- M. Boguñá, F. Papadopoulos, and D. Krioukov, Sustaining the Internet with Hyperbolic Mapping, Nature Communications, v.1, 62, 2010
- D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá, Hyperbolic Geometry of Complex Networks, Physical Review E, v.82, 036106, 2010, Physical Review E, v.80, 035101(R), 2009
- F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat, Greedy Forwarding in (Dynamic) Scale-Free Networks Embedded in Hyperbolic Metric Spaces, INFOCOM 2010, SIGMETRICS MAMA 2009
- M. Boguñá, D. Krioukov, and kc claffy, Navigability of Complex Networks, Nature Physics, v.5, p.74-80, 2009