The Structure and Evolution of the AS-level Internet

Amogh Dhamdhere (CAIDA/UCSD)

Pretty pictures of the Internet

CAIDA's IPv4 & IPv6 AS Core AS-level INTERNET GRAPH

copyright © 2010 UC Regents. all rights reserved.

Different Aspects of Internet Topology

 Router-level: How do individual routers connect to each other?

 PoP-level: How are routers organized into "points of presence"?

 AS-level: How to different networks connect to each other?

Different Aspects of Internet Topology

 Router-level: How do individual routers connect to each other?

 PoP-level: How are routers organized into "points of presence"?

 AS-level: How to different networks connect to each other?

AS-level Internet Topology

- The Internet consists of ~40,000 networks
- Each independently operated and managed
 - "Autonomous Systems" (ASes)
- Distributed, decentralized interactions between ASes
- Different AS types based on business function: transit, content, access, enterprise
- Complex structure inside each AS routers,
 PoPs, backbone links

Topology, traffic, money

- An interdomain link represents a business relationship
- Complex interaction between topology, traffic flow and the flow of money
- Topology and business relationships determine traffic flow; traffic flow determines flow of money
- Topology and business relationships both evolve!

Topology, traffic, money

Outline

- AS topology as a network of business relationships
- Measuring the AS-level Internet
- Structural properties of the AS-level Internet
- Evolution of the AS-level Internet
- Modeling the structure and evolution of the AS-level Internet

AS Business Relationships

- A link between two ASes represents a business relationship
- Broad spectrum of business relationships
- Research literature has mostly considered the two extremes
- Customer-provider: customer pays provider for transit to the rest of the Internet
- Peering: Networks provide access to their respective customers (usually for free)

- Business relationships influence AS routing decisions
- "Valley-free, prefer-customer, prefer-peer" routing policy

- Business relationships influence AS routing decisions
- "Valley-free, prefer-customer, prefer-peer" routing policy

Do not advertise routes from a provider/peer to another provider/peer

- Business relationships influence AS routing decisions
- "Valley-free, prefer-customer, prefer-peer"
 routing policy

Prefer a customer route (revenue generating) over a peer (free) or provider (paid) route

- Business relationships influence AS routing decisions
- "Valley-free, prefer-customer prefer-peer" routing policy

Prefer a peer route (free) over a provider route (paid)

AS B customer of AS A

AS B customer of AS A

AS B customer of AS A

AS A and AS E are peers

AS B customer of AS A

AS A and AS E are peers

AS B customer of AS A

AS A and AS E are peers

Outline

- AS topology as a network of business relationships
- Measuring the AS-level Internet
- Structural properties of the AS-level Internet
- Evolution of the AS-level Internet
- Modeling the structure and evolution of the AS-level Internet

Measuring the AS-level Internet

- Large-scale traceroute projects (Ark, DIMES, etc.)
 - Issue traceroute from a set of vantage points
 - Convert IP-level paths into AS-level paths
 - Combine AS paths to construct AS topology
- Several issues with converting traceroute paths to AS-level paths
 - Third-party addresses
 - IXPs
- Sampling biases*: vantage points must be distributed, and probe the entire routed Internet

Lakhina, Byers, Crovella, Xie, "Sampling Biases in IP Topology Measurements", IEEE Infocom 2003.

Measuring the AS-level Internet

- BGP route monitors are ASes that volunteer to provide BGP feeds
 - Collect AS paths from each BGP monitor towards each routed prefix
 - Construct AS topology by combining AS paths from multiple vantage points
- Routeviews/RIPE RIS are two projects that have been collecting BGP feeds from volunteer ASes for many years
 - Currently about 400 volunteer ASes
- "Cleaner" to construct AS topology from BGP snapshots

Monitor Placement Matters!

Monitor Placement Matters!

(In)visibility of AS topology

- How much of the topology do we miss by using a limited set of BGP vantage points?
- ASes: We see almost all ASes
- Customer-provider links: We see almost all customer-provider links
- Peering links: We likely miss a significant fraction of peering links in the Internet

How many peering links do we miss?

- To observe a peering link A-B, we need vantage points at A, or B, or at an AS hierarchically lower than A and B
- But we only have ~400 monitors, and many of them do not provide a full BGP feed
- Various estimates of the missing number of peering links: up to 60% missing*, up to 90% missing for tier-2 networks and Content Providers*

Chang, Willinger, "Difficulties Measuring the Internet's AS-level Ecosystem", ISS 2006

Oliveira, Pei, Willinger, Zhang, "In Search of the Elusive Ground Truth: The Internet's AS-level Connectivity Structure", Sigmetrics 2008

IXPs

- Internet Exchange Points (IXPs) are a mostly ignored part of the interdomain connectivity ecosystem
- IXPs provide a shared fabric for "public" peering
 - A network can potentially connect to every other network at the IXP
 - Often no route filters: each network could potentially exchange traffic with every other network
- Currently >400 IXPs around the world, and their number and popularity is increasing

Anatomy of a large European IXP

- Ager et al.* measured connectivity and traffic at a large European IXP with ~400 members
- ~67% of all possible interdomain links at the IXP were found to exist!
- More peering links at this one IXP than were estimated to exist in the entire Internet
- Takeway: The public view is missing a large part of the interdomain connectivity picture!

Ager, Chatzis, Feldmann, Sarrar, Uhlig, Willinger, "Anatomy of a Large European IXP", Sigcomm 2012

Back to AS relationships

- We would really like to know the business relationship associated with an interdomain link
- Unfortunately, these are proprietary networks are reluctant to give these away
- Recall that ASes are known to use the "valleyfree, prefer-customer, prefer-peer" routing policy – policies manifest themselves in routes
- Leverage this assumption to infer business relationships based on observed BGP paths

AS relationship inference algorithms

- Gao*proposed the first (and most widely used) AS relationship inference algorithm
- Many refinements in subsequent years:
 Subramaniam et al., Zhang et al., Di Battista et al., Dimtropoulos et al., Gregori et al.
- Unfortunately limited validation of these algorithms; ground truth hard to obtain

Gao, "On Inferring Autonomous System Relationships in the Internet", IEEE/ACM Transactions on Networking, 2001

CAIDA's AS-rank

AS Ranking Org Ranking Information for a single AS Information for a single Org Background Data Sources Help Org Ranking Help The top Organizations ranked by customer cone size are displayed below. Dataset: 2012.10.01 ▼ Change dataset For information about a specific Org, enter its name: Look up an Org by name Search ▼ of 43174 Orgs, sorted by number of ASes in customer cone. Table shows 10 update view Org Org name Num. AS customer cone Org **ASes** rank dearee degree Number of Percentages of all IPv4 IPv4 **ASes ASes IPv4 Prefixes** IPv4 Addresses prefixes addresses Level 3 Communications 18 31.937 336,953 1,835,879,372 75% 180% 71% 4.842 4.255 2 TeliaNet Global Network 5 16,753 173,505 708,992,583 39% 41% 27% 850 755 3 3 15.924 169,875 694,172,644 37% 40% 27% 3,747 3.432 Cogent/PSI 25% 4 Tinet SpA 2 15.147 166,783 639.815.449 35% 39% 956 856 37% 26% NTT America, Inc. 13,249 156.544 674,237,239 31% 884 770 6 TATA Communications 9.028 140.057 561,900,698 21% 33% 21% 943 856 TELECOM ITALIA SPARKLE S.p.A. 18% 309 3 9,001 122,246 460,017,217 21% 29% 343 MCI Communications Services, Inc. 44 8,857 139,353 872,872,874 20% 33% 34% 2,219 1,940 d/b/a Verizon Business 9 14 831,151,193 16% 28% 32% Sprint 7,101 119,608 1,000 884 25% 10 651,247,290 15% 26% Qwest Communications Company. 6.660 112,307 1.844 1.659 LLC data sources geolocation database 2012.06.25 netacuity organization whois 00.00.000 JPNIC, KRNIC, LACNIC 2012.06.29 AFRINIC, APNIC, ARIN, LACNIC, RIPE topology **BGP** 2012.10.01, 2012.10.02, 2012.10.03, 2012.10.04, rrc00, rrc01, rrc03, rrc04, rrc05, rrc06, rrc07, rrc10, rrc11, rrc12, rrc13, rrc14, 2012.10.05 egix, isc, jinx, kixp, linx, routeviews2, routeviews6, saoppaulo, sydney, telxatl, routeviews

Support for this work is provided by the U.S. Department of Homeland Security's <u>Science and Technology Directorate (Project N66001-08-C-2029)</u>, the National Science Foundation Internet Laboratory for Empirical Network Science (Project CNS-0958547), and Cisco's <u>University Research Program</u>.

Workshop on Internet Topology and Economics

CAIDA's AS-rank

- Luckie et al.* developed a new AS-relationship inference algorithm
- Solicited ground truth via a "corrections" interface
- Assembled largest collection of ASrelationship ground-truth to date
- Current algorithm is ~99% accurate for both customer-provider and peering links

Luckie, Huffaker, Dhamdhere, Claffy, "Inferring AS Relationships and Customer Cones", in preparation

Outline

- AS topology as a network of business relationships
- Measuring the AS-level Internet
- Structural properties of the AS-level Internet
- Evolution of the AS-level Internet
- Modeling the structure and evolution of the AS-level Internet

Structural Properties

- Rich area of research over the last decade+ starting with the discovery of power laws by Faloutsos et al.*
- Also a lot of controversy: is it a power-law or not?
- Eventual agreement: degree distribution is highly skewed ©
- How do IXPs change the degree distribution?

Faloutsos, Faloutsos, "On Power Law Relationships in the Internet Topology", ACM Sigcomm 1999

Structural Properties

- Small-world properties: Measured AS graphs show strong clustering and almost constant average path lengths
- Basic topological properties such as degree distribution and clustering have been invariant over time

Tier-1 clique over time [Luckie et al.]*

Luckie, Huffaker, Dhamdhere, Claffy, "Inferring AS Relationships and Customer Cones", in preparation

Outline

- AS topology as a network of business relationships
- Measuring the AS-level Internet
- Structural properties of the AS-level Internet
- Evolution of the AS-level Internet
- Modeling the structure and evolution of the AS-level Internet

Growth Trends

- Number of CP links and ASes showed initial exponential growth until mid-2001 followed by linear growth until today
- Change in trajectory coincided with stock market crash in North America in mid-2001

Classification of ASes based on business function

Four AS types:

- Enterprise customers (EC)
- Small Transit Providers (STP)
- Large Transit Providers (LTP)
- Content, Access and Hosting Providers (CAHP)
- Based on customer and peer degrees
- Classification based on decision-trees
 - 80-85% accurate

Evolution of AS types

- Slow growth of STPs (30% increase since 2001)
- EC population produces most growth (150% increase since 2001)

Path lengths stay constant

- Number of ASes has grown from 5000 in 1998 to 42000 in 2012
- Average path length constant at ~4 AS hops
- Densification?

Where does densification happen?

- CAHPs have increased their multihoming degree significantly (avg. 8 providers for CAHPs today)
- Multihoming degree of ECs almost constant (avg. < 2)
- Densification of the Internet occurs at the core

Dhamdhere, Dovrolis, "Twelve Years in the Evolution of the Internet Ecosystem", IEEE/ACM Transactions on Networking, 2011.

Workshop on Internet Topology and

11/20/2012 Economics 60

Flattening (topology)

- Gill et al.* measured geographical expansion by content providers
- Major CPs are increasingly building out their own networks
- Routes increasingly bypass tier-1 networks

Gill, Arlitt, Li, Mahanti, "The Flattening Internet Topology: Natural Evolution, Unsightly Barnacles, or Contrived Collapse", PAM, 2008.

11/20/2012 Workshop on Internet Topology and Economics 61

Flattening (traffic)

- Arbor networks measurements of interdomain traffic*
- Traffic consolidates: a few large "supergiants"
- Traffic bypasses tier-1 networks; flows directly on peering links

Labovitz, Iekel-Johnson, McPherson, Oberheide, Jahanian, "Internet Inter-domain Traffic", ACM Sigcomm, 2010.

"Open" Peering

- peeringDB: An online database where networks volunteer information about peering
- Lodhi et al.* measured peering policies advertised in peeringDB
- A majority of networks advertise an "open" peering policy --- willing to peer with anyone!

Lodhi, Dhamdhere, Dovrolis, "Analysis of Peering Strategy Adoption by Transit Providers in the Internet", NetEcon 2012.

Outline

- AS topology as a network of business relationships
- Measuring the AS-level Internet
- Structural properties of the AS-level Internet
- Evolution of the AS-level Internet
- Modeling the structure and evolution of the AS-level Internet

Why care for topology models?

- Simulation: For many applications, we cannot simulate the Internet at-scale
 - Need to scale down (or scale up) topologies
- Evolution: We'd like to know how the topology evolves, and what it might be heading towards
- Prediction: We'd like to predict traffic flows and (more interestingly) economic flows: who makes money? Who doesn't?

Top-down models

- Basic idea: Start will well-known properties of Internet topology, produce a model that reproduces those properties
- Example properties: degree distribution, clustering, diameter, betweenness, hierarchy – mostly graph-theoretic metrics
- Pros: perfect for producing synthetic topologies that match certain statistics of the measured topology, small number of parameters

Preferential Attachment

- Barabasi and Albert*: Simple "rich get richer" model that produces power-law degree distributions
- Several follow-up models: Better match degree distribution, as well as other properties, e.g., clustering
- Cons: The data that these models use as input can be incomplete and messy, these models are not necessarily predictive

Barabasi, Albert, "Emergence of Scaling in Random Networks", Science, 1999.

Bottom-up models

- Fundamentally different approach to modeling topology structure and evolution
- Model the incentives and actions of individual actors, let global properties "emerge"
 - E.g., network design incentives*, economic incentives
- Pros: can be designed to capture operational realities, can be used to study dynamics
- Cons: Difficult to parameterize, computationally expensive to simulate

Fabrikant, Koutsoupias, Papadimitriou, "Heuristically Optimized Trade-offs: A New Paradigm for Power Laws in the Internet", ICALP, 2002.

- Agent based computational model
- Model the complex feedback loops between topology, traffic, and economics
- Compute an equilibrium: no network has an incentive to change connectivity

Dhamdhere, Dovrolis, "The Internet is Flat: Modeling the Transition from a Transit Hierarchy to a Peering Mesh", ACM CoNEXT, 2010.

Using ITER to model flattening

- The Old Internet (late 90s – 2007)
- Content providers generated small fraction of total traffic
- Content providers were mostly local
- Peering was restrictive

- The New Internet (2007 onwards)
- Content providers generate large fraction of total traffic
- Content providers are present everywhere
- Peering is more open

ITER: Traffic Transiting Transit Providers

- Traffic bypasses transit providers
- More traffic flows directly on peering links
- Implication: Transit providers lose money!
- Content providers get richer

Back to the Real World

Back to the Real World

Back to the Real World

GENESIS*

- Agent based interdomain network formation model
- Incorporates many real-world constraints in provider/peer selection
- Focuses on strategy selection by ASes
- Objective of a network: Maximize economic fitness
- Choose the peering strategy that maximizes fitness

Lodhi, Dhamdhere, Dovrolis, "GENESIS: An Agent-based Model of Interdomain Netowork Formation, Traffic Flow, and Economics", IEEE Infocom, 2012.

Using GENESIS to study strategy adoption*

Matches very well with data from peeringDB

Lodhi, Dhamdhere, Dovrolis, "Analysis of Peering Strategy Adoption by Transit Providers in the Internet", NetEcon 2012.

Thanks! Questions?

amogh@caida.org
www.caida.org/~amogh