BGPEYSTREAM

A framework for BGP data analysis

Alberto Dainotti, Alistair King, Chiara Orsini, Vasco Asturiano
alistair@caida.org

THE PROBLEM

*Lack of tools for efficient analysis of large volumes of BGP
data

*BGPdump is the de-facto standard
* Lightly-maintained; low-level deserialization of MRT data

*Processing historical data requires (semi-)manual download
and curation of data

Processing across time/collectors/types requires custom
demux code

*|dentifying correct files, sorting of records/types

No tools available for near-realtime/streaming analysis

BGPSTREAM

*Framework for historical analysis and real-time
monitoring of BGP data

*Set of tools, libraries, and interfaces
& /P
*Python Bindings
*ASCll-output command-line tool
*Modular interval-driven processing tool
*Work in progress. Soon to be released as open-source
*v1 release planned (summer 2015)

*Beta code/access available upon request

<)

BGPSTREAM framework

[PLUGIN1] [PLUGIN N]
[BGPREADER } [PYBGPSTREAM }
i yy BGPCORSARO
A

BGPSTREAM LIBRARY

BGPDUMP

{ BGPDOWNLOADER 1

! ! |

e
7 NCC %

DATA FEEDS

Transparent access to different MRT data sources:

1. Previously-downloaded local files

2. Historical and continuous download

*RIBs and updates from RouteViews and RIPE RIS
projects

3. Real-time streams

*Colorado State’s BGPmon (RouteViews collectors)

[work-in-progress for release v1]
%

DATA FEEDS

Transparent access to different MRT data sources:

1. Previously-downloaded local files

2. Historical and continuous download

*RIBs and updates from RouteViews and RIPE RIS
projects

3. Real-time streams

*Colorado State’s BGPmon (RouteViews collectors)
[work-in-progress for release v1]

*RIPE RIS
[discussion in progress]

DATA DOWNLOADER

*Polls RouteViews and RIS websites, downloads new
data as it is published.
*'Normal’ latency of <20mins from capture to usability, but:
* RIS and Routeviews have different delay profiles.
*RIB and update delays are different

* RIS update delays have some recurring phenomena

*On average we expect data availability after:

RIBs Updates
RIS 11.5 min 7.5 min
Routeviews 6.5 min 16.8 min

BGPSTREAM framework

[PLUGIN1] [PLUGIN N]
[BGPREADER } [PYBGPSTREAM }
i yy BGPCORSARO
A

BGPSTREAM LIBRARY

BGPDUMP

[BGPDOWNLOADER 1

! ! |

REE g
7 NCC %

15

BGPSTREAM library

*C library providing a sorted stream of BGPRECORDS

*Transparently combines data sources from different
projects/collectors/types

*Hides data source details/management from users

*Metadata filters to select subset of data
(time/collector/type etc.)

*ldentifies unreliable MRT data

*Supports real-time processing

16

BGPSTREAM library

*How does BGPSTREAM sort heterogeneous data?

UPDATES

RRCOO TITII111111 TITTTITITINT use metadata to

| | decide how
ROUTEVIEWSZ (RRAARAAIARRRR RRRRRR AR AR RN RRRRRR AR RRRJRRRRNE
many dumps to

open in parallel

A 4 A 4 A 4 \ 4

[BGPSTREAM LIBRARY J

*sort based on
1 BGPRECORD time

BRRRRR RN nnanninnnnnnmmnm

19

BGPRECORD

a N\
* PROJECT
*BGP TYPE
— BGPARCHIVE metadata (common to entire dump)
* COLLECTOR
*DUMP TIME
M N . START
DUMP POSITION position of entry in dump MIDDLE
END
%
RECORD TIME time associated with the BGPDUMP ENTRY
* RECORD STATUS status of BGPRECORD — VALID
CORRUPTED RECORD
% EMPTY SOURCE
BGPDUMP ENTRY set o.f MRT formatted CORRUPTED .
N ~ entries —

20

Hello BGPSTREAM \World!

#include "bgpstream.h”

int main(int argc, char *argv[])

{

bgpstream t * bs = bgpstream create(); Al
Oocate memory

bgpstream record t *rec = bgpstream create record();

bgpstream start(bs); Start interface

while(bgpstream get next record(bs, rec) > 0)

{

// [[USE BGPRECORD HERE]] Pull bgprecords
}
bgpstream_stop(bs); StOp interface

bgpstream _destroy record(rec);

Deallocate memory
bgpstream_destroy(bs);

return O0;

BGPSTREAM filters

bgpstream t * bs = bgpstream create();
bgpstream_add_filter(bs, BS PROJECT, "routeviews");
bgpstream add_ filter(bs, BS COLLECTOR, "route-views2");
bgpstream_add_filter(bs, BS COLLECTOR, "route-views.linx");
bgpstream_add_filter(bs, BS BGP_TYPE, "updates");
bgpstream _add_interval_ filter(bs, BS TIME INTERVAL,

"1410285571", —> Tue, 09 Sep 2014 17:59:31 UTC

"1412877600") ; ———> Thu, 11 Sep 2014 00:32:51 UTC

bgpstream_init(bs);

22

BGPRECORD — BGPELEM

C)

* PROJECT

*BGP TYPE =

* COLLECTOR B BGPELEM

*DUMP TIME

- BGPELEM
* DUMP POSITION

* RECORD TIME

R3S BGPELEM

* RECORD STATUS

BGPDUMP ENTRY
N 4

—

23

BGPELEM

N o
c?’@@ &r} %%fo@
"""""""""""""" ®® Q(\O $&(\){5\@
Ty <& v S
* TIMESTAMP oo/ oo/
* PEER IP PREFIX v v v v [Common fields
* PEER AS NUMBER oo/ oo/
*|P PREFIX ooJ S -
* NEXT HOP 4
* AS PATH oo/ — Type-dependent fields
* OLD STATE /
* NEW STATE 7

24

BGPSTREAM just C?

BGPREADER
command line tool

Simplicity

PYBGPSTREAM
C Python bindings

LIBBGPSTREAM
C API

Efficiency

26

PYBGPSTREAM demo

Python C bindings
Same APl as C (almost)
No functionalities are lost

Great for prototyping,
experimental analysis

Table Of Contents
7pybgpstream
= BGPStream

« BGPRecord
« BGPElem

Previous topic
API

Next topic
pybgpstream

This Page

Show Source
Quick search
| | Go

Enter search terms or a module,
class or function name.

28

pybgpstream 1.0 documentation » API » previous | next | modul

_pybgpstream

This document describes the API of the _pybgpstream module, a low-level (almost) direct interface tc
libbgpstream library. For most uses, the pybgpstream module should be used instead.

BGPStream

class _pybgpstream. BGPStream
The BGP Stream class provides a single stream of BGP Records.

add_filter(type, value)
Add a filter to an unstarted BGP Stream instance. Only those records that match the filter(s)
included in the stream.

If multiple filters of the same type are added, a record is considered a match if it matches any
filters. E.g. if add_filter(‘project’, ‘routeviews’) and add._filter(‘project’, 'ris’) are used, then recor
are from either the Route Views, or the RIS project will be included.

If multiple filters of different types are added, a record is considered a match if it matches al
filters. E.g. if add_filter(‘project’, ‘routeviews’) and add_filter(‘record-type’, ‘updates’) are use:
records that are both from the Route Views project, and are updates will be included.

Parameters: . type (str) — The type of the filter, can be one of project, collector, record-type
« value (str) — The value of the filter

Raises: « TypeError — if the type or value are not basestrings
« ValueError — if the type is not valid

add_interval_filter(start, stop)
Add an interval filter to an unstarted BGP Stream instance. Only those records that fall wit
given interval will be included in the stream.

If multiple interval filters are added, then a record is included if it is inside any of the intervals.

Parameters: . start (inf) — The start time of the interval (inclusive)

- otan linf Tha Aand tima af tha intanial lavaliiciva)

BGPSTREAM just C?

A
- BGP BGPCORSARO

£ command line tool command line tool
o +

f—j PYBGP plugins

C Python bindings

LIBBGP
C API

Efficiency

32

BGPCORSARO

*C tool that transforms a stream of BGPRECORDS into a set of
structures and metrics representative of specitic time
intervals

3% . .
interval driven tool

*modular architecture based on plugins

*a fork of CORSARO [2] that operates on BGPRECORDS rather
than LIBTRACE packets

[2] http://www.caida.org/tools/measurement/corsaro/ 33

PROJECT, COLLECTOR, TIME

[BGPSTREAM INSTANCE J(;

BGPCORSARO architecture

DN

f

BGPRECORDS stream

INTERVAL, PLUGINS

}7

L interval start

o

O

@)

o)

2

% | process 5 »

02 >

o

O

O

o

2 interval end N
o

};

BGPCORSARO CORE

f

interval signals

35

|

PLUGIN CONFIGURATION

plugin output

f

program output

BGPCORSARO how to write a plugin?

lib/plugins/bgpcorsaro myplugin.c

process START of interval signal
int
bgpcorsaro_myplugin_start_ interval (bgpcorsaro t *bgpcorsaro,
bgpcorsaro interval t *int start)

process record
int
bgpcorsaro myplugin process_ record(bgpcorsaro t *bgpcorsaro,
bgpcorsaro record t *record)

process END of interval signal
int
bgpcorsaro myplugin_end_interval (bgpcorsaro t *bgpcorsaro,
bgpcorsaro interval t *int end)

38

@ ©

s B0 2 @©E

CAIDA framework
for real-time outage detection

Compute global metrics

Combine routing tables as seen
by different peers

Derive the status of each peer

Sample routing properties over
time

Manage data heterogeneity

Get data

41

[

PER-REGION
VISIBILITY

]

[

PER-AS
VISIBILITY

]

BGPWATCHER
J
~

PEERTABLES]

BGPCORSARO
& 4
(T N\

BGPSTREAM LIBRARY

BGPDUMP

A
BGPARCHIVE

BGPDOWNLOADER

CAIDA framework
for real-time outage detection

* Real-time challenges:

« collectors delay varies a lot:
* project constraints
* per collector differences
* the computational load of each collector varies too

* Processing challenges

« we need to process BGP data faster than real time in order to keep
up with the flow

@i;: NSF CNS-1228994 Pls: Claffy, Dainotti
42

CAIDA framework
for real-time outage detection

BGPWATCHER BGPWATCHER BGPWATCHER
PRODUCER CLIENTS* SERVER CONSUMER CLIENTS*
) \»
O
iz « N .
20 > =
O & o
5% /" BGPSTORE d o
2
> > >
BRRRRRRREEF TR = > S
O
= TS1 TS2
gg S TS..
O
g 1 N / 1
m
—
BGPVIEWS

routing tables

£
% NSF CNS-1228994 Pls: Claffy, Dainotti
43

INTERESTED?

Code is stable and pre-release version is available, but

bootstrapping a deployment is not trivial

*Production deployment here at CAIDA

*Talk to us about getting beta access

*First public release this summer, will support on-demand

streaming from BGPmon archives

*Talk to me about hands-on tutorial (Friday morning?)

48

ANY BGPQUESTIONS?

