
A framework for BGP data analysis

Alberto Dainotti, Alistair King, Chiara Orsini, Vasco Asturiano
alistair@caida.org

THE PROBLEM

2

* Lack of tools for efficient analysis of large volumes of BGP
data

* BGPdump is the de-facto standard
* Lightly-maintained; low-level deserialization of MRT data

* Processing historical data requires (semi-)manual download
and curation of data

* Processing across time/collectors/types requires custom
demux code
* Identifying correct files, sorting of records/types

* No tools available for near-realtime/streaming analysis

BGPSTREAM

3

* Framework for historical analysis and real-time
monitoring of BGP data

* Set of tools, libraries, and interfaces
* C API

* Python Bindings

* ASCII-output command-line tool

* Modular interval-driven processing tool

* Work in progress. Soon to be released as open-source
* v1 release planned (summer 2015)

* Beta code/access available upon request

BGPSTREAM

4

BGPDOWNLOADER

BGPSTREAM LIBRARY

BGPCORSARO

BGPREADER

BGPDUMP

BGPARCHIVE

PLUGIN NPLUGIN1

PYBGPSTREAM

DATA FEEDS

5

Transparent access to different MRT data sources:

1. Previously-downloaded local files

2. Historical and continuous download
* RIBs and updates from RouteViews and RIPE RIS

projects

3. Real-time streams
* Colorado State’s BGPmon (RouteViews collectors)

[work-in-progress for release v1]
* RIPE RIS

[discussion in progress]

DATA FEEDS

6

Transparent access to different MRT data sources:

1. Previously-downloaded local files

2. Historical and continuous download
* RIBs and updates from RouteViews and RIPE RIS

projects

3. Real-time streams
* Colorado State’s BGPmon (RouteViews collectors)

[work-in-progress for release v1]
* RIPE RIS

[discussion in progress]

DATA DOWNLOADER

7

* Polls RouteViews and RIS websites, downloads new

data as it is published.

* ‘Normal’ latency of <20mins from capture to usability, but:

* RIS and Routeviews have different delay profiles.

* RIB and update delays are different

* RIS update delays have some recurring phenomena

* On average we expect data availability after:

RIBs Updates

RIS 11.5 min 7.5 min

Routeviews 6.5 min 16.8 min

BGPSTREAM

15

BGPDOWNLOADER

BGPSTREAM LIBRARY

BGPCORSARO

BGPREADER

BGPDUMP

BGPARCHIVE

PLUGIN NPLUGIN1

PYBGPSTREAM

BGPSTREAM

* C library providing a sorted stream of BGPRECORDS

* Transparently combines data sources from different
projects/collectors/types

* Hides data source details/management from users

* Metadata filters to select subset of data
(time/collector/type etc.)

* Identifies unreliable MRT data

* Supports real-time processing

16

BGPSTREAM

19

ROUTEVIEWS2

RRC00

* How does BGPSTREAM sort heterogeneous data?
UPDATES

BGPSTREAM LIBRARY

* use metadata to
decide how
many dumps to
open in parallel

* sort based on
BGPRECORD time

BGPRECORD

20

* PROJECT

* BGP TYPE

* COLLECTOR

* DUMP TIME

* DUMP POSITION

* RECORD TIME

* RECORD STATUS

* BGPDUMP ENTRY

BGPARCHIVE metadata (common to entire dump)

position of entry in dump

time associated with the BGPDUMP ENTRY

START
MIDDLE
END

status of BGPRECORD VALID
CORRUPTED RECORD
EMPTY SOURCE
CORRUPTED SOURCE set of MRT formatted

 entries

BGPSTREAM

21

#include "bgpstream.h”

int main(int argc, char *argv[])
{

 bgpstream_t * bs = bgpstream_create();

 bgpstream_record_t *rec = bgpstream_create_record();

 bgpstream_start(bs);

 while(bgpstream_get_next_record(bs, rec) > 0)
 {
 // [[USE BGPRECORD HERE]]
 }

 bgpstream_stop(bs);

 bgpstream_destroy_record(rec);

 bgpstream_destroy(bs);

 return 0;
}

Allocate memory

Deallocate memory

Start interface

Pull bgprecords

Stop interface

BGPSTREAM

22

...

 bgpstream_t * bs = bgpstream_create();

 bgpstream_add_filter(bs, BS_PROJECT, "routeviews");

 bgpstream_add_filter(bs, BS_COLLECTOR, "route-views2");

 bgpstream_add_filter(bs, BS_COLLECTOR, "route-views.linx");

 bgpstream_add_filter(bs, BS_BGP_TYPE, ”updates");

 bgpstream_add_interval_filter(bs, BS_TIME_INTERVAL,
 "1410285571",
 "1412877600");

 bgpstream_init(bs);
...

Tue, 09 Sep 2014 17:59:31 UTC
Thu, 11 Sep 2014 00:32:51 UTC

BGPRECORD BGPELEM

23

* PROJECT

* BGP TYPE

* COLLECTOR

* DUMP TIME

* DUMP POSITION

* RECORD TIME

* RECORD STATUS

* BGPDUMP ENTRY

. . .

BGPELEM

BGPELEM

BGPELEM
* BGPDUMP ENTRY

BGPELEM

24

* TYPE

* TIMESTAMP

* PEER IP PREFIX

* PEER AS NUMBER

* IP PREFIX

* NEXT HOP

* AS PATH

* OLD STATE

* NEW STATE

Common fields

Type-dependent fields

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

✓

✓

BGPSTREAM

26

LIBBGPSTREAM
C API

PYBGPSTREAM
C Python bindings

BGPREADER
command line tool

Efficiency

Si
m

pl
ic

ity

PYBGPSTREAM demo

28

•  Python C bindings

•  Same API as C (almost)

•  No functionalities are lost

•  Great for prototyping,
experimental analysis

BGPSTREAM

32

LIBBGPSTREAM
C API

PYBGPSTREAM
C Python bindings

BGPREADER
command line tool

Efficiency

Si
m

pl
ic

ity
 BGPCORSARO

command line tool
+

plugins

BGPCORSARO

33 [2] http://www.caida.org/tools/measurement/corsaro/

* C tool that transforms a stream of BGPRECORDS into a set of
structures and metrics representative of specific time
intervals

* interval driven tool

* modular architecture based on plugins

* a fork of CORSARO [2] that operates on BGPRECORDS rather
than LIBTRACE packets

BGPCORSARO

35

BGPRECORDS stream

BG
PC

O
RS

A
RO

 C
O

RE
 interval start

interval end

process

BG
PC

O
RS

A
RO

 C
O

RE

BG
PS

TR
EA

M
 IN

ST
A

N
C

E

plugin output

PROJECT, COLLECTOR, TIME INTERVAL, PLUGINS PLUGIN CONFIGURATION

interval signals program output

BGPCORSARO

38

lib/plugins/bgpcorsaro_myplugin.c

int
bgpcorsaro_myplugin_start_interval(bgpcorsaro_t *bgpcorsaro,

 bgpcorsaro_interval_t *int_start)

int
bgpcorsaro_myplugin_process_record(bgpcorsaro_t *bgpcorsaro,

 bgpcorsaro_record_t *record)

int
bgpcorsaro_myplugin_end_interval(bgpcorsaro_t *bgpcorsaro,

 bgpcorsaro_interval_t *int_end)

process START of interval signal

process record

process END of interval signal

41

BGPDOWNLOADER

BGPSTREAM LIBRARY

BGPCORSARO

BGPWATCHER

BGPDUMP

BGPARCHIVE

PEERTABLES

PER-AS
VISIBILITY

PER-REGION
VISIBILITY

①  Get data

②  Manage data heterogeneity

③  Sample routing properties over
time

④  Derive the status of each peer

⑤  Combine routing tables as seen
by different peers

⑥  Compute global metrics

42

•  Real-time challenges:

•  collectors delay varies a lot:
•  project constraints
•  per collector differences

•  the computational load of each collector varies too

•  Processing challenges

•  we need to process BGP data faster than real time in order to keep
up with the flow

43

routing tables

PE
R-

A
S

VI
SI

BI
LI

TY

B
G

PC
O

RS
A

RO

PL
U

G
IN

BGPWATCHER
PRODUCER CLIENTS*

BGPWATCHER
SERVER

BGPVIEWS

BGPWATCHER
CONSUMER CLIENTS*

B
G

PC
O

RS
A

RO

PL
U

G
IN

BG
PV

IE
W

BG
PV

IE
W

BG
PV

IE
W

TS1 TS2 TS..

…

BGPSTORE

INTERESTED?

48

* Code is stable and pre-release version is available, but

bootstrapping a deployment is not trivial

* Production deployment here at CAIDA

* Talk to us about getting beta access

* First public release this summer, will support on-demand

streaming from BGPmon archives

* Talk to me about hands-on tutorial (Friday morning?)

ANY BGPQUESTIONS?

Alistair King
alistair@caida.org

