
Alberto Dainotti  
alberto@caida.org

Center for Applied Internet Data Analysis
University of California, San Diego

7th TMA PhD School on Traffic Monitoring and Analysis  
Dublin, Ireland, 19th Jun 2017

BGP measurement and live data 
analysis

w w w .caida.org

mailto:alberto@unina.it?subject=


BGP QUICK TOUR

2



BGP 
intro

3

- What is BGP?
- Border Gateway Protocol - RFC 4271
- The routing protocol of the Internet, used to route traffic across the Internet  

- What are ASes?
- Each routing domain is known as an Autonomous System, or AS
- Each AS has an AS number (ASN), assigned by RIRs   

- Again, what is BGP?
- BGP helps to choose a path through the Internet, usually by selecting a route that traverses 

the least number of autonomous systems: the shortest AS Path.
- Each AS announces to the others, by means of BGP update messages, the routes (AS 

Paths made of ASN hops) to its local prefixes and the preferred routes learned from its 
neighbors. (Path Vector routing protocol)

- It’s used also internally to make multiple BGP routers within the same AS exchange routes 
(IBGP). But we’re mostly interested in Inter-AS dynamics here (EBGP)



BGP PACKET FORMAT

4

Each	BGP	packet	(or	message)	includes	a	Header*	
Min	size	of	a	BGP	packet:	19bytes	(header	only)	
Max	size	of	a	BGP	packet:	4096	(including	header)	

All	fields	network	byte	order	(big	endian,	leF	to	right)	

Header	(19bytes)	 Message	(Max	4077bytes)	

Total	=	4096	bytes		

BGP	Message	Types*:	
BGP	Message	Type	1:	Open		
BGP	Message	Type	2:Update	 	
BGP	Message	Type	3:	NoOficaOon	
BGP	Message	Type	4:	Keepalive	

Marker	(16bytes)	 Length(2bytes)	Type(1	byte)	

Total	=	19	bytes		

- BGP is a Layer 4 protocol that sits on top of  TCP



BGP SESSIONS

5

- BGP neighbors (peers) are established by manual configuration 
between routers to create a BGP session on top of a TCP session 
on port 179.

- Supposed to stay up all time
- keepalive message (e.g., every 30s). If no messages within hold time (e.g., 90s) the session is shut 

down
- shutdown removes all prefixes received over the terminated session

- Open, Keepalive, Notification messages



ADVERTISE & WITHDRAW

6

- Update messages are used to transfer routing information 
between BGP peers 

- Advertisement
- AS PATH

- A router adds its AS number to a route’s AS_PATH only when 
the route is sent to an EBGP neighbor. 

- Convention in writing an AS path:    [F, E, D, C, B, A:10.0.1.0/24]
- F adds (“prepends”) its ASN before advertising the AS_PATH to its neighbors

- Loop avoidance 

- Withdrawal
- only prefix info (no path)



RIBS TABLES AND FILTERS

7

- A BGP router maintains reachability information in the Routing 
Information Base (RIB), which is structured in three sets: 
- Adj-RIBs-In: routes learned from inbound update messages from its neighbors.  

- Loc-RIB: routes selected from Adj-RIBs-In by applying local policies (e.g., shortest path, 
peering relationships with neighbors); the router will install these routes in its routing table to 
establish where to forward packets.  

- Adj-RIBs-Out: routes selected from Loc-RIB, which the router will announce to its 
neighbors; for each neighbor the router creates a specific Adj-RIB-Out based on local policies 
(e.g., peering relationship). 



RELATIONSHIPS

8

- Stub vs Transit 

- Economic relationships
- Provider-to-customer (p2c) 
- Peer-to-peer (p2p)
- Sibling-to-sibling (s2s) 

- Relationships between neighbors determine preferences  
and import/export policies (e.g., prefer a customer over a provider)

- Gao-Rexford Model
- Valley-free assumption: an AS does not transit traffic  

at a revenue loss
- L. Gao, J. Rexford, “Stable Internet routing without  

global coordination”, SIGMETRICS 2000 

 



“IT’S COMPLICATED”

9

- More complex relationships
- Giotsas et al. ”Inferring Complex AS Relationships", IMC 2014
- Anwar et al. “Investigating Interdomain Routing Policies in the Wild ”, IMC 2015  

- MOAS - Multi Origin-AS conflicts
- Zhao et al. ”An analysis of BGP multiple origin AS (MOAS) conflicts” IMW 2001
- Jacquemart et al. ”A Longitudinal Study of BGP MOAS Prefixes", TMA 2014

- LIES!
- BGP Hijacking, misconfiguration, …

- AS_SETS
- born to deal with aggregation. Used to play tricks too.

- Path prepending
- e.g., used to set up backup links

- BGP Communities attribute [RFC1997]

- Address family: ability to distribute synch messages for :
- v4, v6, VPNs, flowspec, …



WHY CARE

10



MEASURING BGP
Why?

11

BGP is the central nervous system of the Internet

BGP’s design is known to contribute to issues in: 

•Availability
-Labovitz et al. “Delayed Internet Routing Convergence”, IEEE/ACM Trans. Netw., 2001.
-Varadhan et al. “Persistent Route Oscillations in Inter-domain Routing”. Computer Networks, 2000.
-Katz-Bassett et al. “LIFEGUARD: Practical Repair of Persistent Route Failures”, SIGCOMM, 2012.

•Performance
-Spring et al. “The Causes of Path Inflation”. SIGCOMM, 2003.

•Security
-Zheng et al. “A Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks in Realtime”. 
SIGCOMM, 2007.

Need to engineer protocol evolution!



MEASURING BGP
Why?

12

•AS-level topology
-Gregori et al. “On the incompleteness of the AS-level graph: a novel methodology for BGP route 
collector placement”, IMC 2012

•AS relationships
- Giotsas et al. “Inferring Complex AS Relationships”, IMC 2014

•AS interactions: driven by relationships, policies, network conditions,   
   operator updates

- Anwar et al. “Investigating Interdomain Routing Policies in the Wild ”, IMC 2015
- Lychev et al. “BGP Security in Partial Deployment: Is the Juice Worth the Squeeze?”, SIGCOMM 

Defining problems and make protocol engineering decisions through  
realistic evaluations is difficult also because we know little about the 
structure and dynamics of the BGP ecosystem!



TOOLS OF THE TRADE

13



MEASURING BGP

14

Generation

Collection

Injection

Processing 
& Analysis

Attempts to generate more info  
(not much traction in the past):
•RFC 4384 BGP Communities for Data Collection 
•draft-ymbk-grow-bgp-collector-communities

data cycle



SOFT ROUTERS
Testbeds, Route Servers, Route Reflectors, …

15

- Quagga
- A routing software suite providing implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng 

and BGP-4 for Unix platforms

- Bird
- The BIRD project aims to develop a fully functional dynamic IP routing daemon primarily 

targeted on (but not limited to) Linux, FreeBSD  

- GoBGP
- an open source BGP implementation designed from scratch for modern environment and 

implemented in a modern programming language, the Go Programming Language
- https://github.com/osrg/gobgp



ROUTE SERVERS
RFC7947

16

- “Multilateral interconnection is a method of exchanging routing 
information among three or more External BGP (EBGP) speakers 
using a single intermediate broker system, referred to as a route 
server.  Route servers are typically used on shared access media 
networks, such as IXPs, to facilitate simplified interconnection 
among multiple Internet routers.” 

- “Although a route server uses BGP to exchange reachability 
information with each of its clients, it does not forward traffic itself 
and is therefore not a router.”

https://ripe72.ripe.net/presentations/97-RIPE72_05-16.pdf



MEASURING BGP

17

Generation

Collection

Injection

Processing 
& Analysis

- Looking Glasses 
- Route Collectors
- BMP

Data Collection



DATA COLLECTION
Looking Glasses

18

- A telnet or Web interface to routers or route servers
- e.g., telnet to route-views.oregon-ix.net allows a subset of “show ip 

bgp commands”
- http://lg.pch.net

- BGP looking glasses give users limited (e.g., read-only) access to a 
command line interface of a router, or allow them to download the 
ASCII output of the current state of the router RIB. 

- Several allow traceroute/ping!
- More useful for interactive exploration (e.g., troubleshooting) rather than 

systematic and continuous data acquisition. 

http://www.traceroute.org/ 
Looking Glass WIKI at http://www.bgp4.net/ 

Ref. https://www.nanog.org/meetings/nanog33/presentations/gibbard.pdf



DATA COLLECTION
Looking Glasses - Periscope

19

- LGs are among the few public measurement tools that provide 
direct interfaces to routers and control+data plane access.

- Lack of standardization and consistency 
- No centralized index of LGs, their locations and their capabilities 
- Periscope: a unified API to LGs

- implements a common querying scheme, indexing and data 
persistence features

572 ASNs with 2,951 VPs in 77 countries 

Giotsas et al., “Periscope: Unifying  
Looking Glass Querying”, PAM 2016

http://www.caida.org/tools/utilities/looking-glass-api



DATA COLLECTION
Collectors

20

- Route Collector
- Establishes BGP peering sessions with one or more real routers (monitors/VPs)
- Each VP sends to the collector update messages (updates) each time the Adj-RIB-out changes, 

reflecting changes to its Loc-RIB 
- Dumps

- For each VP, the collector maintains a session state and an image of the Adj-RIB-out table 
derived from updates. The collector periodically dumps:

- RIB dumps: a snapshot of the union of the maintained Adj-RIB-out tables (every few hrs) 
- Updates dumps: the update messages received from all its VPs since the last dump, along with 

state changes



DATA COLLECTION
Public Collectors Projects

21

- An impressive coverage of the Internet topology!
- typically data is archived (http/ftp access) in MRT format 

- RouteViews
- ~370 monitors

- RIPE RIS
- ~500 monitors
- A few monitors streaming live (web socket, json format)

- Packet Clearing House
- Colorado State BGPmon

- Streaming live xml format



DATA COLLECTION
Monitors: Full vs Partial Feed

22

- What does a monitor share
- Normally, a BGP session with a collector is configured as if the VP was offering transit service to 

the collector.  full-feed
- This way, the collector potentially knows, at each instant, all the preferred-routes that the VP 

will use to reach the rest of the Internet – note this is a partial view of the Internet topology 
graph visible to that router.  

- A partial-feed VP instead, will provide through its Adj-RIB-Out only a subset of the routes in 
its Loc-RIB, e.g., routes to its own networks, or learned through its customers. 



DATA COLLECTION
BGP Monitoring Protocol (BMP) - RFC 7854

23

- BMP encapsulates BGP messages a router receives 
from one or more BGP peers into a single TCP 
stream to one or more collectors

- Efficient, real-time, low memory/CPU on router, little 
to no service impact with peering 

- Simplified configuration (one-time setup) with 
granular controls per peer 

- All address families supported

BMP	Router	
XE/XR/JunOS	

BGP	Peers	

BMP	Collector	

Single	stream	

eBGP/iBGP	

TCP	 BMP	 BGP	IP	

credit: Serpil Bayraktar, Cisco



DATA COLLECTION
OpenBMP/SNAS

24

- Open-source collector that implements BMP 
to store and maintain data in both real-time 
and point-in-time (historical) 

- The collector is a highly scalable producer to 
Apache Kafka. Both RAW BMP messages and 
parsed messages are produced for Kafka 
consumer consumption.

credit: Serpil Bayraktar, Cisco

SNAS	Collector	

BMP	Routers	
XE/XR/JunOS	

Peers	

REST	API	

Apps	
(Analy:cs)	

Data	(raw	and	parsed)	

Message	Bus	
Apps	

(Analy:cs)	

 
www.openbmp.org



MEASURING BGP

25

Generation

Collection

Injection

Processing 
& Analysis

- PEERING Testbed
- ExaBGP

Data Injection



DATA INJECTION
ExaBGP

26

- ExaBGP - a “BGP swiss army knife”
- An application providing an easy way to interact with BGP 

networks
- The program is designed to allow the injection of arbitrary 

routes into a network, including IPv6 and FlowSpec.

https://github.com/Exa-Networks/exabgp/wiki

https://github.com/Exa-Networks/exabgp/wiki


DATA INJECTION
PEERING Testbed

27

- Inject/Receive Routes & Traffic 
- The testbed can multiplex multiple simultaneous research experiments, each of which 

independently makes routing decisions and sends and receives traffic.
- Peering at multiple locations, including major IXPs 

- Made of two components
- Transit Portal: BGP multiplexing service and autonomous system (AS 47065)
- Extended version of Mininet (MiniNExT) to emulate a complex network topology

Figure 1: Overview of PEERING architecture.

each one can make independent routing decisions as well
as send traffic and announcements without interfering with
others. The testbed should protect the rest of the Internet
from experiments by enforcing best practices (for example,
no prefix hijacking or leaks, and only carefully controlled
source address spoofing [27–29]). It should present stability
to the rest of the Internet, without requiring peers to recon-
figure for the coming and going of individual experiments.
Careful consideration of safety will encourage acceptance
and support of the testbed among network operators, which
will help us attain the rich connectivity necessary for realis-
tic experiments.
Empower research. Although previous systems achieve
some of these goals (see Sec. 5), our contribution is to com-
bine all of them into one platform. This combination can im-
prove existing work—rich connectivity would give ARROW
more flexibility in routing around problems and increase ac-
curacy in PoiRoot—and enable new research, such as the
BGP security and hijacking studies mentioned above.

3. ARCHITECTURE AND DESIGN

PEERING lets researchers experiment with interdomain
routing on a global scale, running their own ASes that peer
with hundreds—eventually thousands—of real ASes around
the world. Our approach is to (1) deploy a real AS on the In-
ternet; (2) rely on today’s trends towards massive peering to
help connect our AS to thousands of ASes around the world;
(3) allow researchers to use existing tools to emulate intrado-
main networks and services of their choice; (4) connect these
emulated networks to our global AS, allowing researchers
to use it to exchange routes and traffic between their emu-
lated networks and the real Internet. PEERING comprises two
types of devices: PEERING servers exchange routes with real
ASes, and PEERING clients connect to servers to execute ex-
periments. PEERING staff operate the servers. Researchers
operate clients. Fig. 1 shows an overview of PEERING. Be-
low, we describe the components in more detail, focusing on
how they meet the goals above.
Controlling interdomain topology and routing. PEERING

extends the Transit Portal system [52] to provide interdo-
main control. PEERING operates an AS number and owns
an IPv4 /19 prefix. PEERING servers run the Quagga soft-
ware router to establish BGP sessions with these peers, but
provide hosted experiments with full control over route an-

nouncements. A normal BGP router with multiple peers runs
the BGP route selection process, chooses a best route, then
exports this route to other peers. To provide researchers with
control, PEERING servers do not run the BGP route selection
process; instead, they establish one BGP session per peer
with each client. These multiple sessions serve three goals:
first, clients receive routes exported by each peer (instead
of just the best route) and can make choices independent
of other clients; second, clients can control which of their
announcements go to each provider or peer; third, by “ig-
noring” particular peers, clients can pick and choose peers
in order to emulate a particular topology. Combined, it is
as if clients connect directly to peers. As always with BGP,
clients cannot directly influence ASes they do not peer with.

Although we will not provide transit for non-PEERING des-
tinations, clients can emulate multiple domains. Each emu-
lated domain uses a private ASN “behind” PEERING, which
will strip these off and present only the public PEERING ASN
to the rest of the Internet. The emulated domains can ex-
change routes and traffic with each other directly or across
the real Internet. An emulated domain can provide transit
for real (non-PEERING) ASes towards a prefix announced by
another emulated domain, even selecting routes that traverse
real ASes in between the two emulated domains. With only
our current single ASN, the configuration for certain scenar-
ios is complex. We plan to acquire multiple public ASNs in
the future to ease the deployment and flexibility of these and
other experiments.

While Quagga suffices in our current deployment, it re-
quires a single connection between client and server for each
upstream peer and thus cannot support large IXPs with many
peers [52]. We plan to substitute a more streamlined so-
lution for multiplexing upstream sessions using the BIRD
software router, which enables lightweight multiplexing by
using BGP Additional Paths [6].
Achieving rich connectivity. We take advantage of the in-
creasing role of IXPs [1] to provide PEERING clients with
rich connectivity, even as this trend renders growing frac-
tions of links invisible to traceroute and route collectors [40].
Many IXPs now offer route servers, which offer a central
point for multilateral peering, sidestepping the need to es-
tablish bilateral agreements and configuration. By peering
with the route server at the Amsterdam Internet Exchange
(AMS-IX), PEERING instantly established peering with hun-
dreds of ASes (see Section 4.1). Even among ASes that do
not connect to route servers, or at IXPs that do not offer route
servers, many ASes have open peering policies, meaning
they are willing to peer with any other AS without restric-
tions. This open policy contradicts the common view that
many researchers seem to hold that peering agreements usu-
ally dictate balanced traffic ratios and other requirements.
Section 4.1 shows that open peering is the most prevalent
policy at AMS-IX, and we will discuss how easy it is to es-
tablish these peerings. Content providers in particular tend
to offer open peering. With more and more traffic coming

3

https://peering.usc.edu
Schlinker et al. “PEERING: An AS for Us”, 
HotNets 2014



WEB INTERFACES TO DBS
BGP Data, Whois, Routing Registries, …

28

Hurricane Electric BGP Toolkit
https://stat.ripe.nethttp://bgp.he.net

RIPEstat



MEASURING BGP

29

1. Of course we need more/better data
•more info from the protocol/routers, more collectors, more experimental 
testbeds, … 

2. But we also need better tools to learn from the data
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

Generation

Collection

Injection

Processing 
& Analysis

- libBGPdump  
https://bitbucket.org/ripencc/
bgpdump

Processing & Analysis



MEASURING BGP

30

1. Of course we need more/better data
•more info from the protocol/routers, more collectors, more experimental 
testbeds, … 

2. But we also need better tools to learn from the data
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

two issues - somehow related

Generation

Collection

Injection

Processing 
& Analysis



 .
overview

31

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Design goals:
- Efficiently deal with large amounts of distributed BGP data 
- Offer a time-ordered data stream of data from heterogeneous sources
- Support near-realtime data processing 
- Target a broad range of applications and users 
- Scalable
- Easily extensible 
- Simple API
- Facilitates reproducibility and repeatability

•A software framework for historical and live BGP data analysis 

Orsini et al. “BGPStream: a software 
framework for live and historical BGP 
data analysis“, IMC 2016



 .
it’s real!

32

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•bgpstream.caida.org
•download it! (version 1.1)
•active development - github.com/caida/bgpstream 
•Docs & Tutorials

•lots of people are using it!
•coordination with RouteViews, Colorado State BGPMon, RIPE NCC
•BGP Hackathon February 2016, NANOG Hackathon in June, …
•Collaboration with Cisco to natively support BMP
•V2 coming soon!



•  
wget http://archive.org/xyz/abc/file.mrt  
bgpdump -m file.mrt | my_parser.py

State of the Art?



34

The BGPStream Framework

…

metadata 
crawler

Public HTTP 
Data Archives

Metadata 
Broker

  

User Libraries

metadata query

MRT data 
(via HTTP)

User Code
Python API

libBGPStream



 .
bgpstream.caida.org 

35

1. A web service (“BGPStream Broker”)
•enables SIMPLE access to LOTS of heterogeneous BGP sources

2. LibBGPStream: 
•Acquires the data and provides to upper layers a realtime stream of BGP data
•makes it SIMPLE to process data from LOTS of heterogeneous BGP sources

3. Command-line tools and APIs in C and Python

Center for Applied Internet Data Analysis 
University of California San Diego

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

1

2

3



C API
specifying a stream

36

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or

6



LIBBGPSTREAM API
BGPStream record

37

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•A “BGPStream record” 
encapsulates an MRT record 

•Dumps are composed of multiple 
MRT records, whose type is 
specified in their header

-an update message is stored in a 
single MRT record, but (see next slide) 
update messages related to multiple 
prefixes can be in the same MRT 
record

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'( %%&)%%%&%( %%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].
To reduce the computational cost of sorting records,

we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7



LIBBGPSTREAM API
BGPStream elem

38

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•An MRT record may group 
elements of the same type 
but related to different VPs 
or prefixes

- e.g., routes to the same prefix from 
different VPs (in a RIB dump record)
- e.g., announcements from the same VP to 
multiple prefixes, but sharing a common 
path (in a Updates dump record)

•libBGPStream decomposes 
a record into a set of 
individual elements 
(BGPStream elems)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'( %%&)%%%&%( %%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].

To reduce the computational cost of sorting records,
we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7



C API
while loop

39

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or

6



command-line tool for ASCII output w/ filters

40

BGPREADER

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix
R|B|1445306400|routeviews|route-views.sfmix
R|R|1445306400|routeviews|route-views.sfmix|32354|206.197.187.5|1.0.0.0/24|206.197.187.5|32354 15169|15169|||
...
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2c0f:ffd8::/32|
2001:504:30::ba01:4061:1|14061 1299 33762|33762|1299:30000||
R|R|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2c0f:ffd8::/32|
2001:504:30::ba00:6939:1|32354 6939 37105 33762|33762|||
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|3803:b600::/32|
2001:504:30::ba01:4061:1|14061 2914 3549 27751|27751|2914:420 2914:1008 2914:2000 2914:3000||
R|E|1445306401|routeviews|route-views.sfmix
U|A|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2402:ef35::/32|
2001:504:30::ba03:2354:1|32354 6939 6453 4755 7633|7633|||
U|A|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2a02:158:200::/39|
2001:504:30::ba01:4061:1|14061 2914 44946|44946|2914:410 2914:1201 2914:2202 2914:3200||
...

Center for Applied Internet Data Analysis 
University of California San Diego



PYBGPSTREAM
Example: studying AS path inflation

41

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer than the shortest path between two ASes due 
to routing policies? (directly correlates to the increase in BGP convergence time)

30 LINES OF 
PYTHON CODE

Center for Applied Internet Data Analysis 
University of California San Diego



PYBGPSTREAM
Example: timely combine with active measurements

42
Center for Applied Internet Data Analysis 
University of California San Diego

(a) Fraction of traceroute queries that
reach each black-holed destination.

(b) Fraction of traceroute queries per
black-holed destination that reach each
origin AS.

Figure 4: Two metrics showing a pronounced difference in the data-plane reachability of black-holed destinations during (red)
and after RTBH (green). For each destination we execute traceroutes from 50-100 Atlas probes (depending on the connectivity
of the origin AS), which we repeat after blackholing is withdrawn. The results are ordered based on the values of each metric
during RTBH.

combine data-plane and control-plane measurements to
demonstrate how we can gain a better understanding
of how black-holing is implemented and its effects. Our
purpose is to illustrate how BGPStream filters and live-
mode streams facilitate complicated measurements that
otherwise would require enormous instrumentation ef-
forts, rather than providing a complete study of RTBH.

We identify as an RTBH request any triple of (collec-
tor, VP, prefix) that is tagged with at least one black-
holing community from a list we compiled by parsing
the IRR records and technical support websites for 30
ASes (13 Tier-1 providers, 12 multinational ISPs, and 5
academic networks). We respectively mark the start of
an RTBH request when we first observe a BGP update
with a black-holing community attached on a prefix that
was previously announced without such a community,
and the end when such prefix is re-advertised without
it or explicitly withdrawn.

We executed our RTBH measurements between 20-29
April 2016 by continuously listening to BGP updates
from the route-views2 and RRC12 collectors, for IPv4
prefix announcements tagged with black-holing commu-
nities. Almost 80% of the RTBH requests we detected
have a duration of less than a day, while 20% have a
duration of less than 40 minutes. These observations
are consistent with previous studies on DoS attack du-
ration [6,25]. Therefore, it is important to minimize the
delay between the application of black-holing commu-
nities and the detection time, in order to avoid missing
the time window during which we can execute tracer-
oute measurements toward the black-holed prefixes. To
minimize latency between BGP and traceroute mea-
surements, we utilize two BGPStream streams (within
the same Python script) running in live mode to col-
lect BGP updates. We apply community-based filters
to the first stream so that it only yields prefix announce-
ments tagged with at least one black-holing community.
Whenever we observe a RTBH request from this stream,
we add a filter for the black-holed prefix to the second

stream to capture explicit or implicit withdrawals. Us-
ing two streams in this manner provides a clear sepa-
ration of concerns, simplifying the logic in our Python
script. That is, one stream triggers investigation of a
prefix, whereas the other (possibly) triggers the com-
pletion of investigation.

Upon detecting the start of an RTBH request we or-
chestrate a set of paris ICMP traceroutes towards a
random IP address in the corresponding prefix. We se-
lect currently-active RIPE Atlas probes from: (i) the
visible AS neighbors of the origin AS, (ii) ASes that
are co-located in the same IXPs as the origin AS, (iii)
the same country of the target IP (to account for po-
tentially invisible peripheral peering inter-connections).
Our measurements are timely in most of the cases: we
are able to probe over 95% and 90% of the black-holed
prefixes, respectively for updates collected from RIPE
RIS and RouteViews, before the RTBH is switched off.
We also repeat the same traceroutes as we detect the
end of the RTBH request.

In total, we discovered 482 black-holed prefixes, orig-
inated by 67 different ASes. 398 of the black-holed pre-
fixes had a length longer than /24, 397 of which had a
length of /32 (single hosts). Contrary to the best prac-
tices that recommend the suppression of black-holed
prefix advertisements [16, 39] or prefixes that are too
specific [27], during the short period of our experiment
we observed a non-trivial number of black-holed pre-
fixes that propagated beyond the AS that defined the
balck-holing communities. Namely, the corresponding
ASes applied neither the egress filter for black-holed
prefixes, nor the egress filter for too specific prefixes.
Past works found that prefixes longer than /24 are vis-
ible to 20% – 30% of the monitors at the BGP collec-
tors [4,10]. In Section 5 we briefly analyze the propaga-
tion of BGP communities as it is visible from BGP col-
lectors. However, the control-plane propagation of the
black-holed prefixes beyond the network that applies
the black-holing has not been analyzed before. From

• We monitor community-based black-holing

• Victim of DoS attack announces prefix with special 
community attribute to request neighbors drop 
traffic

• We trigger traceroutes to characterize the black-
holing event (using 50-100 probes per event)

• probed 253 victims (90-95% of black-holing 
events) while black-holing in effect

• Combined passive control-plane and  active data-
plane measurements to capture and investigate 
transient routing policies



BGPCORSARO
Example: monitor your own address space on BGP

43

Time (UTC)

# Origin ASes [y2]# Prefixes [y1]

26. Jan5. Jan 12. Jan 19. Jan
0

20

40

60

80

100

0

1

2

#
 p

re
fi
x
e

s

#
 o

rig
in

 A
S

e
s

Figure 6: Monitoring of GARR (AS195) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS195.

Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We used this plugin to process data from all avail-
able Route Views and RIPE RIS collectors, for January
2015, setting the time bin size to 5 minutes, and pro-
viding as input to the plugin the IP ranges covered by
the 78 prefixes originated by AS137 (GARR, the Ital-

ian Academic and Research Network) as observed on
January 1st, 2015. Figure 6, shows a graphical repre-
sentation of the two time-series generated by the plugin:
the number of unique announced prefixes (in green) and
number of unique origin ASNs (in blue). While a small
oscillation of the number of prefixes announced is ex-
pected (as prefixes can be announced as aggregated or
de-aggregated), in 4 cases the number of unique an-
nouncing ASes shifts from 1 to 2, for about 1 hour.
Through manual analysis, we found that, during these
spikes, a portion of GARR’s IP space (specifically, 7
/24 prefixes) was also announced by TehnoGrup (AS
198596), a Romanian AS that appears to have no re-
lationship with GARR. The event on January 7th is
reported as an hijack attack by Dyn Research [29], and
given the similar nature of the other three events visible
in the graph (1st, 7th and 8th of January), the plugin
output suggests that three additional attacks occurred.
Although this approach cannot detect all types of hi-
jacking attacks, it is still a valid method to identify
suspicious events and serves to demonstrate the capa-
bilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.

In the IODA research project [13], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed

9

The “prefix-monitor” plugin 
(distributed with source) 
monitors a set of IP ranges as 
they are seen from BGP monitors 
distributed worldwide: 
- how many prefixes reachable
- how many origin ASes
- generates detailed logs

Hijacking of AS137 (GARR) - Jan 2015*

*Originally discovered by Dyn: 
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/ Center for Applied Internet Data Analysis 

University of California San Diego



NO MANUAL DOWNLOADS
libBGPStream talks to the broker and gets the data

44

stream.add_filter(‘record-type’,	‘ribs’)	
stream.add_filter(’collector’,	‘route-views.sfmix’)	
stream.add_interval_filter(1445306400,1445306402)

bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"rrc06");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"route-views.jinx");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	"updates");	
bgpstream_add_interval_filter(bs,	1286705410,	1286709071);

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix -t updates
$ bgpcorsaro -w 1445306400,1445306402 -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

Experiments can 
be easily 

reproduced:  
a script defines 

the (public) data 
used



GET  A  LIVE  STREAM
libBGPStream keeps retrieving data as it becomes available

45

stream.add_filter(‘record-type’,	‘ribs’)	
stream.add_filter(’collector’,	‘route-views.sfmix’)	
stream.add_interval_filter(1445306400,-1)

bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"rrc06");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"route-views.jinx");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	"updates");	
bgpstream_add_interval_filter(bs,	1286705410,	BGPSTREAM_FOREVER);

$ bgpreader -c route-views.sfmix -t updates
$ bgpcorsaro -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

Experiments can 
be easily 
repeated:  

a script defines 
the (public) data 

used



CRUNCH BIG DATA
44Billion BGPElems processed w/ Spark + PyBGPStream

46
Center for Applied Internet Data Analysis 
University of California San Diego

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s 
   

   
   

   
   

  

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

# ASNs (IPv4)

Transit ASNs % (IPv6)

# ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

routing table 



CRUNCH BIG DATA
44Billion BGPElems processed w/ Spark + PyBGPStream

47
Center for Applied Internet Data Analysis 
University of California San Diego

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

MOAS 

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s 
   

   
   

   
   

  

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

# ASNs (IPv4)

Transit ASNs % (IPv6)

# ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9



CRUNCH BIG DATA
44Billion BGPElems processed w/ Spark + PyBGPStream

48
Center for Applied Internet Data Analysis 
University of California San Diego

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

Transit ASes
2002 2004 2006 2008 2010 2012 2014 2016

0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s 
   

   
   

   
   

  

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

# ASNs (IPv4)

Transit ASNs % (IPv6)

# ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9



CRUNCH BIG DATA
44Billion BGPElems processed w/ Spark + PyBGPStream

49
Center for Applied Internet Data Analysis 
University of California San Diego

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

BGP 2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s 
   

   
   

   
   

  

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

# ASNs (IPv4)

Transit ASNs % (IPv6)

# ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9



50
w w w .caida.org

•Country-level Internet Blackouts 
 during the Arab Spring 

•Natural disasters affecting 
the infrastructure

Egypt, Jan 2011 
Government orders 
to shut down the 
Internet  

Japan, Mar 2011 
Earthquake of 
Magnitude 9.0 

(a) Christchurch (b) Tohoku

Figure 5: Networks selected within the estimated maximum radius of im-
pact of the earthquake (20km for Christchurch and 304km for Tohoku). We
based our geolocation on the publicly available MaxMind GeoLite Country
database.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340
 360

 380
 400

 420
 440

 460
 480

 500

θ
 - 

R
at

io
 o

f d
is

tin
ct

 IP
s 

be
fo

re
/a

fte
r e

ar
th

qu
ak

e

Km

(x=137,y=3.59)

(x=6,y=2.0)

Christchurch Tohoku

Figure 6: Measuring the impact of the earthquake on network connectivity
as seen by the telescope: value of ✓ for all networks within a given range
from the epicenter. The peak value ✓max reached by ✓ can be considered
the magnitude of the impact.

kilometers from its epicenter, consistent with the stronger magni-
tude of Tohoku’s earthquake (see Table ??) and news reports re-
garding its impact on buildings and power infrastructure. Table ??
summarizes these indicators found for both earthquakes.

Christchurch Tohoku
Magnitude (✓max) 2 at 6km 3.59 at 137km
Radius (⇢max) 20km 304km

Table 3: Indicators of earthquakes’ impact on network connectivity as ob-
served by the UCSD network telescope.

IBR traffic also reveals insight into the evolution of the earth-
quake’s impact on network connectivity. Figure ?? plots the num-
ber of distinct source IPs per hour of packets reaching the telescope
from networks within the �max = 20 km radius from the epicenter
of Christchurch’s earthquake. All times are in UTC. The time range
starts approximately one week before the earthquake and ends two
weeks after. We would not expect the IBR traffic to drop to zero,
for two reasons. First, not all networks are necessarily disabled by
the earthquake. Second, the geolocation database services we use
are not 100% accurate.

For a few days before the event, peaks are always above 140
unique IP addresses per hour (IPs/hour) on weekdays, sometimes
above 160 IPs/hour. In the 24 hours after the earthquake, the rate
drops, with a peak slightly above 100 IPs/hour. The IPs/hour rate

climbs slowly, reaching pre-event levels only after a week, which
correlates with the restoration of power in the Christchurch area [?].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

02-18 00:00

02-20 00:00

02-22 00:00

02-24 00:00

02-26 00:00

02-28 00:00

03-02 00:00

03-04 00:00

N
u
m

b
e
r 

o
f 
d
is

tin
ct

 I
P

s 
p
e
r 

h
o
u
r

EARTHQUAKE

Figure 7: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within a
⇢max = 20km range from the Christchurch earthquake epicenter. The
rate of distinct IPs per hour drops immediately after the earthquake. Peaks
before the earthquake were above 140-160 IPs/hour on weekdays (weekend
is on 19-20 February), while the first peak after the earthquake is slightly
above 100 IPs/hour. Levels remain lower for several days, consistent with
the slow restoration of power in the area.

Figure ?? plots the same graph for IBR traffic associated with the
Tohoku earthquake, within a maximum distance �max = 304 km
from the epicenter. The much steeper drop in the number of unique
IPs per hour sending IBR traffic is consistent with the Tohoku earth-
quake’s much larger magnitude than that of the Christchurch earth-
quake. In the days after the event the IBR traffic starts to pick up
again, but does not reach the levels from before the event during
the analyzed time interval, also consistent with the dramatic and
lasting impact of the Tohoku earthquake on Northern Japan.

 100

 200

 300

 400

 500

 600

 700

 800

03-04 00:00

03-06 00:00

03-08 00:00

03-10 00:00

03-12 00:00

03-14 00:00

03-16 00:00

03-18 00:00

03-20 00:00

03-22 00:00

N
u
m

b
e
r 

o
f 
d
is

tin
ct

 I
P

s 
p
e
r 

h
o
u
r

EARTHQUAKE

Figure 8: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within
⇢max = 304km of the Tohoku earthquake epicenter. The rate of distinct
IPs per hour shows a considerable drop after the earthquake which does not
return to previous levels even after several days.

Figures ?? and ?? show that the rate of unique IP addresses per
hour observed by the telescope matches the dynamics of the earth-
quakes, reflecting their impact on network connectivity. In order to

EPICENTER 

Center for Applied Internet Data Analysis 
University of California San Diego

Dainotti et al. “Analysis of Country-wide  
Internet Outages Caused by Censorship”  
IMC 2011

Dainotti et al. “Extracting Benefit from 
Harm: Using Malware Pollution to Analyze 
the Impact of Political and Geophysical 
Events on the Internet”  
SIGCOMM CCR 2012

INSPIRING PROJECTS (1/2)
IODA: Detection and Analysis of Internet Outages

www.caida.org/funding/ioda/



51

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Country-wide Internet outages in Iraq that the government ordered 
in conjunction with the ministerial preparatory exams - Jul 2015

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fix

e
s #

 p
re

fixe
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

www.caida.org/funding/ioda/

INSPIRING PROJECTS (1/2)
IODA: Detection and Analysis of Internet Outages



IODA: Detection and Analysis of Internet Outages

52

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

# 
of

 P
re

fix
es

# 
of

 U
ni

qu
e 

So
ur

ce
 IP

s

Outage of AS11351(Time Warner Cable LLC)
September 30, 2015

INSPIRING PROJECTS (1/2)

www.caida.org/funding/ioda/



BEFORE IODA

53
w w w .caida.org

Center for Applied Internet Data Analysis 
University of California San Diego

post-event manual analysis

Egypt, Jan 2011 
Government orders 
to shut down the 
Internet  

4 months of work

Dainotti et al. “Analysis of Country-wide Internet Outages 
Caused by Censorship” IMC 2011



IODA AFTER 4 YEARS (TODAY)
live detection and monitoring

54

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

https://ioda.caida.org

https://ioda.caida.org/


Hijacks: detection of MITM BGP attacks

55
w w w .caida.org

55

source (poisoned) attacker

normal path
hijacked path

S

D A

S Ddest (hijacked prefix) A
normal path  
used to complete 
the attack

www.caida.org/funding/hijacks/

INSPIRING PROJECTS (2/2)



IODA’S CITY MAP
high-level system view

56

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Data-plane packets

B G P      T R E A M

libcorsaro I/O loggingintervals

interval endprocess packetinitialize finalizeinterval start

.log

lib
tr
ac

e

tools corsarocor-aggcor2ascii

.cor

[your name here]

.pcap

plugins Flow-Tuple DoS [yours!]

.ft.cor .dos.cor [.you.cor]

libTim
eSeries

Active Probing

Internet Background Radiation CORSARO

Border Gateway Protocol

A r c h i p e l a g o  

Ping-based
measurements
coordination

and /24 outage
inference 

(USC/ISI methodology)

WHISPER

PHP 
BACKEND

JAVASCRIPT FRONTEND

ALERTS
ALERTS

SEVERITY SCORE
TIME SERIES

EMAIL USERS

OUTAGE
DETECTION

REQUEST
TRACEROUTES

LibIPmeta

UCSD Network
Telescope

Ping and Traceroute

Measurement Data Processing

Time Series DBs

Outage Detection

Alerts

Web Application
Transformation
Data



Data-plane packets

B G P      T R E A M

libcorsaro I/O loggingintervals

interval endprocess packetinitialize finalizeinterval start

.log

lib
tr
ac

e

tools corsarocor-aggcor2ascii

.cor

[your name here]

.pcap

plugins Flow-Tuple DoS [yours!]

.ft.cor .dos.cor [.you.cor]

libTim
eSeries

Active Probing

Internet Background Radiation CORSARO

Border Gateway Protocol

A r c h i p e l a g o  

Ping-based
measurements
coordination

and /24 outage
inference 

(USC/ISI methodology)

WHISPER

PHP 
BACKEND

JAVASCRIPT FRONTEND

ALERTS
ALERTS

SEVERITY SCORE
TIME SERIES

EMAIL USERS

OUTAGE
DETECTION

REQUEST
TRACEROUTES

LibIPmeta

UCSD Network
Telescope

Ping and Traceroute

Measurement Data Processing

Time Series DBs

Outage Detection

Alerts

Web Application
Transformation
Data

BGPSTREAM
efficient scalable processing of Internet routing data

57

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Data-plane packets

B G P      T R E A M

interval endprocess packetinitialize finalizeinterval start

.log

tools corsaro [your name here]

.pcap

Flow-Tuple DoS [yours!]

.ft.cor .dos.cor [.you.cor]

libTim
eSeries

Active Probing

Internet Background Radiation CORSARO

Border Gateway Protocol

A r c h i p e l a g o  

Ping-based
measurements
coordination

and /24 outage
inference 

(USC/ISI methodology)

WHISPER

PHP 
BACKEND

JAVASCRIPT FRONTEND

ALERTS
ALERTS

SEVERITY SCORE
TIME SERIES

EMAIL USERS

OUTAGE
DETECTION

REQUEST
TRACEROUTES

LibIPmeta

UCSD Network
Telescope

Ping and Traceroute

Measurement Data Processing

Time Series DBs

Outage Detection

Alerts

Web Application
Transformation
Data



BGPSTREAM IN IODA
the toolchain we needed to process routing data

58

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org



Center for Applied Internet Data Analysis 
University of California San Diego

BGPSTREAM IN IODA

59
w w w .caida.org

32 BGPCorsaro instances processing data from ~500 routers

ensures data  
accuracy and integrity

manages trade-off 
between: 
- buffer size 
- latency 
- completeness 



THANKS 

60

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

bgpstream.caida.org 

alberto@caida.org


