
Chiara Orsini, Alistair King,
Danilo Giordano, Vasileios Giotsas,

Alberto Dainotti

alistair@caida.org
CAIDA, UC San Diego

a framework for historical analysis
and real-4me monitoring of BGP data

mailto:alistair@caida.org

2

 BGPSTREAM
BGP data analysis for the masses

• Open source libraries, APIs and tools for live and historical BGP data analysis

• Simple API

• Versa?le
• Facilitates reproducibility and repeatability
• Real?me monitoring

• Stable: h"ps://bgpstream.caida.org

3

 MOTIVATION
Why BGPStream?

• BGP research and monitoring is important

• Lots of exis?ng BGP measurement data

• Route Views and RIPE RIS have >15 years of data (16TB)

• BUT, dis?nct lack of good tooling for processing/analyzing BGP data
• State of the art?  

4

 MOTIVATION
Why BGPStream?

• BGP research and monitoring is important

• Lots of exis?ng BGP measurement data

• Route Views and RIPE RIS have >15 years of data (16TB)

• BUT, dis?nct lack of good tooling for processing/analyzing BGP data
• State of the art?  
wget http://archive.org/xyz/abc/file.mrt 

5

 MOTIVATION
Why BGPStream?

• BGP research and monitoring is important

• Lots of exis?ng BGP measurement data

• Route Views and RIPE RIS have >15 years of data (16TB)

• BUT, dis?nct lack of good tooling for processing/analyzing BGP data
• State of the art?  
wget http://archive.org/xyz/abc/file.mrt 
bgpdump -m file.mrt | my_parser.py

6

 MOTIVATION
Why BGPStream?

• BGP research and monitoring is important

• Lots of exis?ng BGP measurement data

• Route Views and RIPE RIS have >15 years of data (16TB)

• BUT, dis?nct lack of good tooling for processing/analyzing BGP data
• State of the art?  
wget http://archive.org/xyz/abc/file.mrt 
bgpdump -m file.mrt | my_parser.py

7

 THE BGPSTREAM FRAMEWORK
An overview

8

 THE BGPSTREAM FRAMEWORK
An overview

Metadata
Broker

9

 THE BGPSTREAM FRAMEWORK
An overview

Metadata
Broker User Libraries

10

 THE BGPSTREAM FRAMEWORK
An overview

…

metadata
crawler

Public HTTP
Data Archives

Metadata
Broker

User Libraries

11

 THE BGPSTREAM FRAMEWORK
An overview

…

metadata
crawler

Public HTTP
Data Archives

Metadata
Broker

User Libraries

metadata query

12

 THE BGPSTREAM FRAMEWORK
An overview

…

metadata
crawler

Public HTTP
Data Archives

Metadata
Broker

User Libraries

metadata query

MRT data
(via HTTP)

13

 THE BGPSTREAM FRAMEWORK
An overview

…

metadata
crawler

Public HTTP
Data Archives

Metadata
Broker

User Libraries

metadata query

MRT data
(via HTTP)

libBGPStream

Python API

User Code

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

14

 THE BGPSTREAM FRAMEWORK
Stacked view

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

15

 THE BGPSTREAM FRAMEWORK
Stacked view

1

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

16

 THE BGPSTREAM FRAMEWORK
Stacked view

1

2

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

17

 THE BGPSTREAM FRAMEWORK
Stacked view

1

2

3

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

18

 BGPSTREAM USER LIBRARY
libBGPStream

• Issues queries to metadata broker

• Retrieves data directly from Data Providers

• Currently supports MRT (RFC 6396)

• De-mul?plexes data from many sources
into a single stream

• Provides ?me-ordered sor?ng

19

 RECORDS & ELEMS
ExtracAng informaAon from MRT

• BGPStream Record:

• Encapsulates an MRT record

• Adds metadata (e.g. collector)

• MRT records (may) contain info for mul?ple
peers/prefixes
• E.g. routes to a single prefix from mulOple peers

in a RIB dump

• Records are decomposed into BGPStream Elems:
• E.g. prefix announcement from a single peer

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].

To reduce the computational cost of sorting records,
we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7

BGPStream Record

3.3 libBGPStream

3.3.1 Application Programming Interface

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API defines
a BGP data stream by the following parameters: collec-
tor projects (e.g., RouteViews, RIPE RIS), list of col-
lectors, dump types (RIB/Updates), time interval start
and either time interval end or live mode. A stream
can include dumps of different type and from different
collector projects.

On the BGPStream website [12] we provide tutori-
als with sample code to use the BGPStream API. In
general, any program using the libBGPStream C API
consists of a stream configuration phase and a stream
reading phase: first, the user defines the meta-data fil-
ters, then the iteratively requests new records to pro-
cess from the stream. Code can be converted into a
live monitoring process simply by setting the end of the
time interval to -1.

3.3.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers, the
library implements a “client pull” model, which enables
efficient data retrieval without potential input buffer
overflow (i.e., data is only retrieved when the user is
ready to process it).

To implement this model, the system iteratively al-
ternates between making meta-data queries to the Bro-
ker and accessing and processing the dump files whose
URLs are returned by the Broker. When the Broker
returns an empty set of dump file URLs, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, libBGPStream will poll
until a response from the Broker points to new data for
processing.

3.3.3 Data structures and error checking

libBGPStream processes dump files [9] composed of
MRT records. While an update message is stored in a
single MRT record, RIB dumps require multiple records.
The BGPStream record structure contains a de-serialized
MRT record, as well as an error flag, and additional an-
notations related to the originating dump (e.g., project
and collector names).

To open MRT dumps, we use a version of libBGP-
dump [54] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support reading from multi-
ple files in parallel from a single process, and (iii) signal
a corrupted read. libBGPStream uses this signal to
mark a record as not-valid (status field) when the BGP
dump file cannot be opened or if the dump is corrupted.
libBGPStream also marks records that begin or end a
dump file, allowing users to collate records contained in
a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or
announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures. Table 1 shows the fields that comprise a
BGPStream elem. The AS path field contains all in-
formation present in the underlying BGP message, as
specified in RFC 4271 [52], including AS SET and
AS SEQUENCE segments. libBGPStream also pro-
vides convenience functions for easily iterating over seg-
ments in an AS path, accessing fields within a segment,
and converting paths and segments to strings (using the
same format as bgpdump). We do not currently expose
all the BGP attributes contained in a MRT record in
the BGPStream elem; we will implement the remaining
attributes in a future release. The old state and new
state fields refer to elems from RIPE RIS VPs. Each
RIPE RIS collector maintains, for each VP, a Finite
State Machine (FSM) for the status of the BGP session
with the VP, we store the previous and current state of
the FSM.

Table 1: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, an-
nouncement, withdrawal, or state
message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
community* struct community attribute
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on
type

3.3.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping
time intervals2, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector

2We define the time interval associated with a dump
file as the time range covered by the timestamps of its
records.

BGPStream Elem

20

 C API
Specifying a stream

21

 C API
Specifying a stream

22

 C API
Specifying a stream

23

 C API
Specifying a stream

24

 C API
Consuming the stream

25

 C API
Consuming the stream

26

 C API
Consuming the stream

27

 PYTHON BINDINGS - CASE STUDY
Studying AS path inflaAon using PyBGPStream

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

30 LINES OF PYTHON CODE

How many AS paths are longer than the shortest path between two ASes?

28

 PY BGPSTREAM
Python bindings

• Single script includes data specifica?on and analysis logic:

• Enhances reproducibility/repeatability

• All of the power of the C API, available in Python

29

 PYTHON BINDINGS - CASE STUDY
Timely reacAve measurements

• We monitor community-based black-holing
• Vic?m of DoS aWack announces prefix with special

community aPribute to request neighbors drop traffic

• We trigger traceroutes to characterize the black-holing
event (using 50-100 probes per event)

• probed 253 vic?ms (90-95% of black-holing events)
while black-holing in effect

• Combined passive control-plane and ac2ve data-plane
measurements to capture and inves2gate transient
rou2ng policies
(a) Fraction of traceroute queries that
reach each black-holed destination.

(b) Fraction of traceroute queries per
black-holed destination that reach each
origin AS.

Figure 4: Two metrics showing a pronounced difference in the data-plane reachability of black-holed destinations during (red)
and after RTBH (green). For each destination we execute traceroutes from 50-100 Atlas probes (depending on the connectivity
of the origin AS), which we repeat after blackholing is withdrawn. The results are ordered based on the values of each metric
during RTBH.

combine data-plane and control-plane measurements to
demonstrate how we can gain a better understanding
of how black-holing is implemented and its effects. Our
purpose is to illustrate how BGPStream filters and live-
mode streams facilitate complicated measurements that
otherwise would require enormous instrumentation ef-
forts, rather than providing a complete study of RTBH.

We identify as an RTBH request any triple of (collec-
tor, VP, prefix) that is tagged with at least one black-
holing community from a list we compiled by parsing
the IRR records and technical support websites for 30
ASes (13 Tier-1 providers, 12 multinational ISPs, and 5
academic networks). We respectively mark the start of
an RTBH request when we first observe a BGP update
with a black-holing community attached on a prefix that
was previously announced without such a community,
and the end when such prefix is re-advertised without
it or explicitly withdrawn.

We executed our RTBH measurements between 20-29
April 2016 by continuously listening to BGP updates
from the route-views2 and RRC12 collectors, for IPv4
prefix announcements tagged with black-holing commu-
nities. Almost 80% of the RTBH requests we detected
have a duration of less than a day, while 20% have a
duration of less than 40 minutes. These observations
are consistent with previous studies on DoS attack du-
ration [6,25]. Therefore, it is important to minimize the
delay between the application of black-holing commu-
nities and the detection time, in order to avoid missing
the time window during which we can execute tracer-
oute measurements toward the black-holed prefixes. To
minimize latency between BGP and traceroute mea-
surements, we utilize two BGPStream streams (within
the same Python script) running in live mode to col-
lect BGP updates. We apply community-based filters
to the first stream so that it only yields prefix announce-
ments tagged with at least one black-holing community.
Whenever we observe a RTBH request from this stream,
we add a filter for the black-holed prefix to the second

stream to capture explicit or implicit withdrawals. Us-
ing two streams in this manner provides a clear sepa-
ration of concerns, simplifying the logic in our Python
script. That is, one stream triggers investigation of a
prefix, whereas the other (possibly) triggers the com-
pletion of investigation.

Upon detecting the start of an RTBH request we or-
chestrate a set of paris ICMP traceroutes towards a
random IP address in the corresponding prefix. We se-
lect currently-active RIPE Atlas probes from: (i) the
visible AS neighbors of the origin AS, (ii) ASes that
are co-located in the same IXPs as the origin AS, (iii)
the same country of the target IP (to account for po-
tentially invisible peripheral peering inter-connections).
Our measurements are timely in most of the cases: we
are able to probe over 95% and 90% of the black-holed
prefixes, respectively for updates collected from RIPE
RIS and RouteViews, before the RTBH is switched off.
We also repeat the same traceroutes as we detect the
end of the RTBH request.

In total, we discovered 482 black-holed prefixes, orig-
inated by 67 different ASes. 398 of the black-holed pre-
fixes had a length longer than /24, 397 of which had a
length of /32 (single hosts). Contrary to the best prac-
tices that recommend the suppression of black-holed
prefix advertisements [16, 39] or prefixes that are too
specific [27], during the short period of our experiment
we observed a non-trivial number of black-holed pre-
fixes that propagated beyond the AS that defined the
balck-holing communities. Namely, the corresponding
ASes applied neither the egress filter for black-holed
prefixes, nor the egress filter for too specific prefixes.
Past works found that prefixes longer than /24 are vis-
ible to 20% – 30% of the monitors at the BGP collec-
tors [4,10]. In Section 5 we briefly analyze the propaga-
tion of BGP communities as it is visible from BGP col-
lectors. However, the control-plane propagation of the
black-holed prefixes beyond the network that applies
the black-holing has not been analyzed before. From

analysis). In practice, since the number of communities
a VP observes depends on the filtering by the ASes in its
vicinity, analysis requiring either diversity of BGP com-
munities or communities from a specific AS requires a
careful choice of VPs/collectors. Figure 5d4, shows the
VPs as circles (inner colored circles) with diameter pro-
portional to the number of distinct AS identifiers (in-
ferred from the two most-significant bytes of the com-
munity value) in the BGP communities they observe.
The aggregated data (by collector and by data collec-
tion project) are depicted as grey circles, and highlight
which collectors observe a more heterogeneous set of
BGP communities: RouteViews collectors route-views2
(3,624), linx (3,262), route-views4 (3,236), and RIPE
RIS collectors rrc04 (2,979), rrc01 (2,947), and rrc12
(2,886). We selected the two collectors used for the
analysis in Section 4.3 based on these data.

Performing analyses such as those discussed in this
section without using BGPStream requires considering
scalability issues (besides the efforts described in Sec-
tion 4.2: crawling, data indexing, ASCII output pars-
ing). For example, the amount of data needed for large
longitudinal analyses may preclude a-priori download.
In this case, a researcher would need to develop a system
to dynamically download a moving window of data for
consumption by analysis code. However, such a solu-
tion will turn storage into a potential bottleneck, since
the size of the window limits the number of processing
units that can run in parallel. A better solution would
instead enable processing scripts to download data on
demand, which is close (but still suboptimal) to the
functionality provided by libBGPStream (which does
not download the file to disk but streams it to the script
directly from the HTTP connection). Another benefit
of such functionality in a cluster-computing context is
that it reduces the overhead of data locality optimiza-
tion, since it implicitly co-locates each data block with
the appropriate processor.

6. CONTINUOUS MONITORING

6.1 Lightweight monitoring: BGPCorsaro
BGPCorsaro is a tool to continuously extract de-

rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

4An interactive, high-resolution version of this graph,
as well as the equivalent for IPv6, are available at [14].

Figure 6: Monitoring of GARR (AS137) IP space us-
ing the pfxmonitor plugin. The green line is the number
of unique prefixes announced over time. The blue line is
the number of unique origin ASes that announce them: the
spikes identify four hijacking events in which AS 198596 an-
nounces part of the IP space belonging to AS137.

of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis
of historical or live data streams. In Section 6.2, we
describe a deployment of BGPCorsaro that runs 24/7 as
a part of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We use a BGP hijacking event reported by Dyn Re-
search, the hijacking of Italian Academic and Research
Network (GARR) prefixes on January 7th 2015 [45], to
demonstrate this plugin. We configured the plugin to
process data from all available RouteViews and RIPE
RIS collectors for January 2015, setting the time bin
size to 5 minutes, and providing as input to the plugin
the IP ranges covered by the 78 prefixes originated by
AS137 (GARR) as observed on January 1st, 2015. Fig-
ure 6 shows a graphical representation of the two time-
series generated by the plugin: the number of unique
announced prefixes (in green) and number of unique
origin ASNs (in blue). While a small oscillation of the
number of prefixes announced is expected (as prefixes
can be announced as aggregated or de-aggregated), in 4
cases the number of unique announcing ASes shifts from
1 to 2, for about 1 hour. Through manual analysis, we
found that during these spikes a portion of GARR’s IP
space (specifically, 7 /24 prefixes) was also announced
by TehnoGrup (AS 198596), a Romanian AS that ap-
pears to have no relationship with GARR. The report

30

 BGP CORSARO
ConAnuous realAme monitoring

• Plugin-based tool for processing live
BGP data

• Con?nuously extracts derived data from
BGPStream in regular 2me bins

• Incl. “prefix-monitor” sample plugin
• Monitor your own address space

• How many prefixes/origin ASes?

Hijacking of AS137 (GARR) - Jan 2015*

*originally described by Dyn Research:
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/

31

 BIG DATA
BGP data analysis for the 1%

• “Students can write scripts to analyze BGP data, but I need to do REAL analysis…”

• We conducted a proof-of-concept study using PyBGPStream with Apache Spark:

• Analyzed 15 years of data:

• one RIB per month

• all Route Views and RIPE RIS collectors

• > 3000 RIBs, ~44 billion BGPStream Elems

• See the paper for more details about lessons learned

• PyBGPStream/Spark template script: hWps://github.com/CAIDA/bgpstream

https://github.com/CAIDA/bgpstream

32

 BIG DATA - CASE STUDIES
RouAng table size over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

33

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

34

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

35

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

36

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

37

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

38

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

39

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

40

 BIG DATA - CASE STUDIES
Transit ASes over Ame

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we in-
vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

41

 COMPLEX MONITORING INFRASTUCTURE

• E.g. real?me global monitoring for:

• Internet outages

• BGP hijacking aWacks

• Leveraging BGPCorsaro and BGPStream

• But there are addi?onal challenges…

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

42

 ROUTING TABLES
ConAnuously rebuilding the state of each peer

• Goal: infer per-peer rou?ng tables every
minute

• Route Views and RIPE RIS sample peer
rou?ng tables every 4, 8 hours respec?vely

• We infer intermediate states from updates

• we use RIBs as “sync frames”

• process modeled as a finite state machine

• implemented as a BGPCorsaro plugin
• error rates of 10-8 (RIS) and 10-5 (RV)

UP UP
RIB Application

DOWN
RIB Application DOWN

update RIB/update

RIB/update

RIB end

RIB start

RIB end

RIB start

State Established State DownCorrupted Record

consistent routing table

unavailable routing table

12

3 4

RIB/update

Figure 8: Finite State Machine (FSM) for recon-
structing VP routing table. The two macro states (con-
sistent routing table and unavailable routing table represent
the (un)availability of a consistent routing table. The FSM
starts in the down state, then it usually moves to down-RIB-
Application, and, for the vast majority of time, it oscillates
between up and up-RIB-Application.

older than the latest Update records applied by the plu-
gin. To cope with this issue, we check each individual
record of a RIB dump and only apply information from
the record if the timestamp of the record is more recent
than the timestamp of information already applied by
the plugin. E3. Upon receiving a corrupted Updates
dump record we stop applying Updates and wait for the
next RIB dump. E4. We force state transitions upon
receiving certain VP state messages (e.g., receipt of a
state message with the Established code [52] triggers a
transition to the UP state).

We save state and routing table information in a
multi-dimensional hash table, which can be seen as a
matrix with prefixes as rows and VPs as columns. Each
cell contains the reachability-attributes for the prefix
(e.g., the AS path), the timestamp of when the cell was
last modified by an Updates dump record, and a A/W
flag that indicates whether such operation was an an-
nouncement or a withdrawal. In addition, for each cell,
the RT plugin uses a shadow cell to temporarily store
records from a new RIB dump until it receives its last
record: if none of the RIB dump records are corrupted
(E1), we replace the content of the main cell with the
content of the shadow cell unless the timestamp of the
RIB record is older than the cell’s last modification time
(E2).

Figure 8 depicts the process of maintaining a VP
routing table as a finite state machine that models the
state of the VP. When the plugin starts, the VP’s rout-
ing table is unavailable and the VP is in state down (1).
When a new RIB dump starts, the VP’s state moves to
down-RIB-application state (2). During this phase, the
plugin populates the shadow cells with the information
received from the RIB dump records and the main cells
with Updates dump records. The VP’s state becomes
up (3) once the entire RIB dump is received; when in
this state the routing table is determined to be an accu-

rate representation of the VP’s routing table. Each new
announcement or withdrawal record triggers modifica-
tion of the main cell, whereas if a new RIB dump starts,
the VP’s state transitions to up-RIB-application (4), a
state similar to (3) but whereby the RIB dump records
modify the shadow information of the cells. Once the
RIB ends, the shadow and main cells are merged (as de-
scribed previously) and the VP transitions to state (3)
again. In addition, a corrupted Updates dump record
forces the state to be down (E3). Reception of an Up-
dates dump record carrying a state message5 with the
Established code [52] moves the VP’s state to up (E4),
whereas reception of any other state message indicates
that the connection between the VP and the collector
is not established, and therefore, the VP is considered
down (E4).
To evaluate the accuracy of our approach, we peri-

odically compare the information in the current and
shadow cell. RIS and RouteViews error probabilities
– defined as the number of mismatching prefixes over
the sum of all VPs’ prefixes – calculated over 12 months
across 31 collectors, are 10−8 and 10−5 respectively. We
find that mismatches are usually caused by unrespon-
sive VPs for which we do not have state messages (e.g.,
RouteViews), or by a collector not applying all incoming
update messages before starting its RIB dump (but ap-
plying them afterwards, even if they have been already
assigned a timestamp).

6.2.2 IO routines: diffs, (de)serialization, Kafka

At the end of each time bin, the RT plugin transmits
the reconstructed routing table of each VP to a Kafka
cluster. However, in order to reduce the volume of data
to be stored and later processed by the consumers, we
developed routines that allow the RT plugin to com-
pute the difference between the routing table generated
at the previous time bin and the current one and trans-
mit only the changed portions (which we call diff cells).
Consumers use complementary routines to retrieve the
data from Kafka and reconstruct a full routing table
by applying diffs to the previously stored version. The
resulting data structure marks the updated portions of
the routing table, allowing a consumer to limit its anal-
ysis to only these data. We periodically (e.g., 1 hour)
also store entire (non-diff) routing tables in the Kafka
cluster that applications can use for synchronizing in
order to receive future diffs.

Figure 9 highlights the advantage (in terms of num-
ber of processed BGP elems) of processing only diffs be-
tween routing tables instead of processing every update

5Each RIPE collector maintains, for each VP, a finite
state machine for the status of the BGP session with the
VP and dump specific messages when state transitions
occur. RouteViews collectors do not dump such state
messages, hence the plugin may maintain a stale routing
table for a VP that is actually down. To mitigate this
problem, we also declare a VP down if none of its routes
are present in the latest RIB dump.

43

 DATA REDUCTION
Removing redundancy in updates

• Significant redundancy in
update messages

• Output only changes
between successive peer
rou?ng tables

• Reduces data volume:

• 3x reducOon at 1min
compared to updates

0

10M

20M

30M

M
a
xi

m
u
m

BGP elems

diff cells

1 5 10 15 20 25 30 35 40 45 50 55 60

Time interval (min)

0

0.5M

1.0M

1.5M

A
ve

ra
g
e

Figure 9: RT diffs vs. BGP elems. Results from running
the RT plugin on data from route-views2 for the month of
March 2016: average and maximum number (bottom and
top graphs respectively) of BGP elems (red circles) and diff
cells published by the RT plugin (blue squares) in each time
bin.

message. We run the RT plugin on data from route-
views2 for the month of March 2016: in the graph, the
red circles show the average (bottom) and maximum
(top) number of BGP elems extracted from BGP update
messages in each time bin, whereas the blue squares
show the number of diff cells between consecutive rout-
ing tables. When the time bin is 1 minute, there are
on average more than 3 times fewer diff cells than BGP
elems, indicating that there is redundancy in update
messages even at such short time scales. As the size
of the time bin increases, the reduction factor also in-
creases, at the expense of time granularity; a time bin
of 1 hour yields ≈13 times fewer diff cells than BGP
elems. Also, the maxima show that by processing diffs,
consumers are more resilient to bursts of updates (e.g.,
as a result of prefixes flapping).

6.2.3 Data synchronization

Different collectors, and in general different data sources,
provide data with variable delay. Performing data syn-
chronization requires a trade-off between latency, amount
of data available at processing time, and memory foot-
print. The optimal point in such a trade-off depends
on the specific application goals and requirements. A
monitoring application may require data from all (or a
given fraction of) available sources for the current time
bin regardless of latency. Other applications may have
stringent real-time requirements and prefer to explic-
itly set a time-out. For example: in realtime detection
of hijacking, we set a time-out of few minutes to ex-
ecute traceroutes as soon as a suspicious BGP event
is detected; in the IODA application instead, we relax
latency constraints in favor of data completeness and
we use a time-out of 30 minutes, since it results in RT
routing tables from all the VPs to be available for con-
sumption for 99% of the time bins (we verified it on
data from 2014 and 2015).

We designed a system based on meta-data stored in
Kafka and multiple sync servers, each implementing a
different synchronization mechanism: each BGP Cor-
saro RT plugin writes in the Kafka queue, along with

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

pr

ef
ixe

s # prefixes

Figure 10: Visible Iraqi prefixes (June, 20- July, 20
2015). Number of prefixes observable in BGP that geolo-
cate to Iraq (blue line, y2 axis) and number of unique pre-
fixes announced by the 5 top Iraqi providers (stacked lines,
y1 axis). An observable series of ≈3-hour outages starts on
June 27, and ends on July 15. According to the media, the
local government ordered complete shutdowns of the Inter-
net service in the country.

the routing tables, indexing meta-data; such meta-data
is monitored by the sync servers, which based on the
synchronization criterion they implement, inject meta-
data into their own topic in the Kafka queue to mark
data as ready for consumption. By using Kafka, the re-
sulting system is horizontally scalable (since Kafka sup-
ports distributing data across many nodes) and robust
(e.g., due to data replication). In addition, since sync
servers only handle lightweight meta-data which have a
small memory footprint, they do not affect scalability.

6.2.4 Consumers

Consumers implement routines that analyze the rout-
ing tables retrieved from Kafka to perform event detec-
tion, extraction of statistics to output as time series
etc. We developed two consumers for near-realtime de-
tection of per-country and per-AS outages. Both con-
sumers select the prefixes observed by full-feed VPs and
monitor the visibility of these prefixes by computing the
number of prefixes geo-located to each country and an-
nounced by each AS. The consumers store this data into
a time series monitoring system supporting automated
change-point detection and data visualization.

Figure 10 shows data from the per-country and per-
AS outages consumers over a period of 1 month, (June
20 to July 20, 2015), selecting prefix visibility associ-
ated with Iraq and five of the biggest Iraqi ISPs. The
noticeable drops reflect a sequence of country-wide In-
ternet outages that the government ordered in conjunc-
tion with the ministerial preparatory exams [8, 29,32].

7. CONCLUSIONS
BGPStream targets a broad range of applications and

users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as

44

 SYNCHRONIZATION
Aligning distributed data into a global view

• Data from different projects and
collectors is available at different ?mes

• Need to buffer per-peer tables while we
wait

• There is a trade-off:

• Buffer size

• Latency

• Completeness

• Some apps need data as soon as possible,
others as complete as possible

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

45

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

46

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

47

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

48

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

49

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

50

 SYNCHRONIZATION
Aligning distributed data into a global view

• Our solu?on:

• Supports mul?ple applica?ons with
single architecture

• Uses a metadata-based ga?ng
mechanism

• Implemented using BGPCorsaro and
Apache Kaka

• Minimal per-applica?on overhead
means excellent scalability

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet
In this section, we present a distributed architecture

built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.

To frame context and motivation for developing such
complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion,
we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.

We sketch our proposed architecture in Figure 7: mul-
tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.
We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

51

 A COMMUNITY EFFORT
There’s lots to be done

• We’re not alone in working to modernize BGP analysis/monitoring:

• OpenBMP, RouteViews, RIPE RIS Streaming, BGPmon (Colorado State)

• Some coordina?on between efforts:

• Hosted BGP Hackathon in collaboraOon with Route Views/RIPE/BGPmon

• Ongoing acOve collaboraOon with Cisco & OpenBMP developers

• BGPStream is complementary:
• Allows users to easily take advantage of collecOon advancements

• With liPle/no changes to code

52

 DEVELOPMENT ROADMAP
Coming soon…

• v2.0 release
• Na?ve BMP [RFC7854]/OpenBMP support
• BeWer filter interface, e.g.: 
prefix any 1.2.3.0/22 and collector rrc06 and aspath '$681_1444_'

• Performance improvements & bug fixes

• Public OpenBMP collector (We’re looking for BMP feeds)

• Addi?onal Metadata Broker web app instances (We’re looking for hosts)

• RIPE RIS Streaming support

… but, we’d happily repriori?ze things based on your feedback

53

 SUMMARY
Easier, faster, less error-prone BGP data analysis

• Improves repeatability, reproducibility and share-ability

• Give it a try!
• h"ps://bgpstream.caida.org

• Give us feedback!
• h"ps://github.com/caida/bgpstream 

54

55

 NEW FILTER SYNTAX
Coming Soon…

56

 DELAYS
GePng updates dumps

• 5 (RIS) and 15 (RV) minutes delay due to file rota?on dura?on

• plus small amount of variable delay due to publica?on infrastructure

• But, 99% of Updates dumps are available in < 20 minutes aser the dump was begun

57

 THE CASE FOR SUPPORTING MRT
… for the moment

• “MRT is dead, why not support a modern collecSon format?”

• MRT is s?ll the de-facto standard for BGP data collec?on

• Loads of historical MRT data
• Route Views and RIPE RIS have >14 years of data (XXTB)

• Vast majority of new data collected is s?ll MRT

• Users shouldn’t have to care about collec?on format
• BGPStream: support for MRT internally, but other formats are coming…

58

 BGP READER
CLI with parseable ASCII output

• Supports all the filters that libBGPStream supports

• Drop-in replacement for bgpdump

59

 BGPSTREAM.CAIDA.ORG
Real people are using it!

• Stable: version 1.0 was released over a year ago

• Maintained: version 1.1 released in Feb

• Documented: API documenta?on and tutorials at bgpstream.caida.org

• Community involvement via GitHub:
• Several community-contributed Pull-Requests,

• Incl. pending PR to add support for RPKI

60

 FILTERS
Analyze only what you’re interested in

• Time

• Collector

• Updates and/or RIBs

• Prefix*
• Community*

