
Alberto Dainotti, Alistair King 
alberto@caida.org, alistair@caida.org

Center for Applied Internet Data Analysis
University of California, San Diego

Meeting with Cisco Systems 
San Jose, CA, 5th Dec 2017

BGPStream and OpenBMP

w w w .caida.org

mailto:alberto@unina.it?subject=

AGENDA
20 min + Q/A

2

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•BGPStream

•Collab w/ Cisco OpenBMP group  

•V2 & Applications 

•Future Work

 .
Game-changing technology to enable BGP analytics

3

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Design goals:
- Efficiently deal with large amounts of distributed BGP data
- Offer a time-ordered data stream of data from heterogeneous sources
- Support near-realtime data processing
- Target a broad range of applications and users
- Scalable (e.g., use Apache Spark to crunch billions of updates)
- Easily extensible
- Simple API
- Facilitates reproducibility and repeatability

•Open Source Software APIs for historical and live BGP data analysis
- Python, C, Command Line tools, …

•Accelerates existing and enables fundamentally new analytic capabilities

bgpstream.caida.org

http://bgpstream.caida.org

•IRTF ANRP award - Jan 2017

 .
For/with the operator + research community

4

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Version 1 and IETF 94 Tech Plenary - Nov 2015

•ACM IMC paper - Nov 2016

•Version 1.1 and BGP Hackathon - Feb 2016

•NANOG 66 - Feb 2016

•RIPE 70 and tech report - May 2015

Orsini et al.  
“BGPStream: a software framework for
live and historical BGP data analysis“  
ACM SIGCOMM IMC 2016

•IETF 98 - Mar 2017

•Version 2.0 beta1- Today!

PEOPLE USE IT
hackathons, papers, net admins, …

5

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Various hackathons: NANOG, RIPE, …
•github.com/caida/bgpstream

•some significant pull requests from 3rd parties  

•Selected papers:
- Counter-RAPTOR: Safeguarding Tor Against Active Routing
Attacks [SP’17] - Sun et al.

-I-Seismograph: Observing, Measuring, and Analyzing Internet
Earthquakes [ToN‘17] - Zhang et al.

- Sibyl: A Practical Internet Route Oracle. [NSDI’16] - Cunha et al.

- PathCache: A Path Prediction Toolkit. [SIGCOMM’16] - Singh et al.

•  
wget http://archive.org/xyz/abc/file.mrt  
bgpdump -m file.mrt | my_parser.py

State of the Art?

7

The BGPStream Framework

…

metadata
crawler

Public HTTP
Data Archives

Metadata
Broker

User Libraries

metadata query

MRT data
(via HTTP)

User Code
Python API

libBGPStream

 .
bgpstream.caida.org

8

1. A web service (“BGPStream Broker”)
•enables SIMPLE access to many heterogeneous BGP sources

2. LibBGPStream:
•Acquires the data and provides to upper layers a realtime stream of BGP data
•makes it SIMPLE to process data from many heterogeneous BGP sources

3. Command-line tools and APIs in C and Python

Center for Applied Internet Data Analysis 
University of California San Diego

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

1

2

3

NO MANUAL DOWNLOADS
libBGPStream talks to the broker and gets the data

9

stream.add_filter(‘record-type’,	‘ribs’)	
stream.add_filter(’collector’,	‘route-views.sfmix’)	
stream.add_interval_filter(1445306400,1445306402)

bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"rrc06");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_COLLECTOR,	"route-views.jinx");	
bgpstream_add_filter(bs,	BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	"updates");	
bgpstream_add_interval_filter(bs,	1286705410,	1286709071);

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix -t updates
$ bgpcorsaro -w 1445306400,1445306402 -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

Experiments can
be easily

reproduced:  
a script defines

the (public) data
used

command-line tool for ASCII output w/ filters

10

BGPREADER

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix
R|B|1445306400|routeviews|route-views.sfmix
R|R|1445306400|routeviews|route-views.sfmix|32354|206.197.187.5|1.0.0.0/24|206.197.187.5|32354 15169|15169|||
...
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2c0f:ffd8::/32|
2001:504:30::ba01:4061:1|14061 1299 33762|33762|1299:30000||
R|R|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2c0f:ffd8::/32|
2001:504:30::ba00:6939:1|32354 6939 37105 33762|33762|||
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|3803:b600::/32|
2001:504:30::ba01:4061:1|14061 2914 3549 27751|27751|2914:420 2914:1008 2914:2000 2914:3000||
R|E|1445306401|routeviews|route-views.sfmix
U|A|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2402:ef35::/32|
2001:504:30::ba03:2354:1|32354 6939 6453 4755 7633|7633|||
U|A|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2a02:158:200::/39|
2001:504:30::ba01:4061:1|14061 2914 44946|44946|2914:410 2914:1201 2914:2202 2914:3200||
...

Center for Applied Internet Data Analysis 
University of California San Diego

PYBGPSTREAM
Example: studying AS path inflation

11

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer than the shortest path between two ASes due
to routing policies? (directly correlates to the increase in BGP convergence time)

30 LINES OF
PYTHON CODE

Center for Applied Internet Data Analysis 
University of California San Diego

PYBGPSTREAM
Example: synchronizing with active measurements

12
Center for Applied Internet Data Analysis 
University of California San Diego

(a) Fraction of traceroute queries that
reach each black-holed destination.

(b) Fraction of traceroute queries per
black-holed destination that reach each
origin AS.

Figure 4: Two metrics showing a pronounced difference in the data-plane reachability of black-holed destinations during (red)
and after RTBH (green). For each destination we execute traceroutes from 50-100 Atlas probes (depending on the connectivity
of the origin AS), which we repeat after blackholing is withdrawn. The results are ordered based on the values of each metric
during RTBH.

combine data-plane and control-plane measurements to
demonstrate how we can gain a better understanding
of how black-holing is implemented and its effects. Our
purpose is to illustrate how BGPStream filters and live-
mode streams facilitate complicated measurements that
otherwise would require enormous instrumentation ef-
forts, rather than providing a complete study of RTBH.

We identify as an RTBH request any triple of (collec-
tor, VP, prefix) that is tagged with at least one black-
holing community from a list we compiled by parsing
the IRR records and technical support websites for 30
ASes (13 Tier-1 providers, 12 multinational ISPs, and 5
academic networks). We respectively mark the start of
an RTBH request when we first observe a BGP update
with a black-holing community attached on a prefix that
was previously announced without such a community,
and the end when such prefix is re-advertised without
it or explicitly withdrawn.

We executed our RTBH measurements between 20-29
April 2016 by continuously listening to BGP updates
from the route-views2 and RRC12 collectors, for IPv4
prefix announcements tagged with black-holing commu-
nities. Almost 80% of the RTBH requests we detected
have a duration of less than a day, while 20% have a
duration of less than 40 minutes. These observations
are consistent with previous studies on DoS attack du-
ration [6,25]. Therefore, it is important to minimize the
delay between the application of black-holing commu-
nities and the detection time, in order to avoid missing
the time window during which we can execute tracer-
oute measurements toward the black-holed prefixes. To
minimize latency between BGP and traceroute mea-
surements, we utilize two BGPStream streams (within
the same Python script) running in live mode to col-
lect BGP updates. We apply community-based filters
to the first stream so that it only yields prefix announce-
ments tagged with at least one black-holing community.
Whenever we observe a RTBH request from this stream,
we add a filter for the black-holed prefix to the second

stream to capture explicit or implicit withdrawals. Us-
ing two streams in this manner provides a clear sepa-
ration of concerns, simplifying the logic in our Python
script. That is, one stream triggers investigation of a
prefix, whereas the other (possibly) triggers the com-
pletion of investigation.

Upon detecting the start of an RTBH request we or-
chestrate a set of paris ICMP traceroutes towards a
random IP address in the corresponding prefix. We se-
lect currently-active RIPE Atlas probes from: (i) the
visible AS neighbors of the origin AS, (ii) ASes that
are co-located in the same IXPs as the origin AS, (iii)
the same country of the target IP (to account for po-
tentially invisible peripheral peering inter-connections).
Our measurements are timely in most of the cases: we
are able to probe over 95% and 90% of the black-holed
prefixes, respectively for updates collected from RIPE
RIS and RouteViews, before the RTBH is switched off.
We also repeat the same traceroutes as we detect the
end of the RTBH request.

In total, we discovered 482 black-holed prefixes, orig-
inated by 67 different ASes. 398 of the black-holed pre-
fixes had a length longer than /24, 397 of which had a
length of /32 (single hosts). Contrary to the best prac-
tices that recommend the suppression of black-holed
prefix advertisements [16, 39] or prefixes that are too
specific [27], during the short period of our experiment
we observed a non-trivial number of black-holed pre-
fixes that propagated beyond the AS that defined the
balck-holing communities. Namely, the corresponding
ASes applied neither the egress filter for black-holed
prefixes, nor the egress filter for too specific prefixes.
Past works found that prefixes longer than /24 are vis-
ible to 20% – 30% of the monitors at the BGP collec-
tors [4,10]. In Section 5 we briefly analyze the propaga-
tion of BGP communities as it is visible from BGP col-
lectors. However, the control-plane propagation of the
black-holed prefixes beyond the network that applies
the black-holing has not been analyzed before. From

• We monitor community-based black-holing

• Victim of DoS attack announces prefix with special
community attribute to request that neighbors
drop traffic

• We trigger traceroutes to characterize the black-
holing event (using 50-100 probes per event)

• probed 253 victims (90-95% of black-holing
events) while black-holing in effect

• Combined passive control-plane and active data-
plane measurements to capture and investigate
transient routing policies

BIG DATA IN A FEW LINES
44Billion BGPElems processed w/ Spark + PyBGPStream

13
Center for Applied Internet Data Analysis 
University of California San Diego

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

10

20

30

40

50

60

Tr
a
n
s
it

A
S

N
s

%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

Heatmap of routing table size (color reflects # peers)

BIG DATA IN A FEW LINES
44Billion BGPElems processed w/ Spark + PyBGPStream

14
Center for Applied Internet Data Analysis 
University of California San Diego

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

MOAS per collector and aggregate

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

10

20

30

40

50

60

Tr
a
n
s
it

A
S

N
s

%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9

BIG DATA IN A FEW LINES
44Billion BGPElems processed w/ Spark + PyBGPStream

15
Center for Applied Internet Data Analysis 
University of California San Diego

Code at www.caida.org/publications/papers/2016/bgpstream/supplemental  

Transit ASes
2002 2004 2006 2008 2010 2012 2014 2016

0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

10

20

30

40

50

60

Tr
a
n
s
it

A
S

N
s

%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9

COLLAB W/ CISCO

16

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

COLLAB W/ CISCO
Tasks

17

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•1: Native OpenBMP Support in BGPStream
- Rearchitect BGPStream
- Add support for Kafka Encapsulation
- Deserialize BMP data into BGPStream

•2: Distribute BMP data
- Run a public collector
- Coordinate w/ RouteViews
- Tutorial on how to use BGPStream with your BMP router/collector 

•3: Cooperate w/ OpenBMP group
- Creatd LibParseBGP
- New OpenBMP features: NAT/PAT, Router connection rate limiting
- Bi-dir feedback and testing
- Dissemination of results and work in progress

TASK 1
Native OpenBMP Support in BGPStream

18

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Pre-existing conditions: BGPStream v1.1
- No BMP support
- entirely MRT-based
- RouteViews, RIPE RIS, … —> ~20 min delay! We want real live streaming

TASK 1
Native OpenBMP Support in BGPStream

19

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Task 1.1 - Rearchitect BGPStream
- LibBGPStream had a monolithic architecture. We turned it into modular
(object-oriented C implementation)

•Data Interfaces:
- Broker; Single file; CSV

•Single format
- MRT

•Single transport
- Dump files (http/FS)

•Data Interfaces:
- Broker; Single file; CSV; Kafka

•Formats:
- MRT; BMP; …

•Transports:
- Dump files; Kafka

BEFORE NOW

TASK 1
Native OpenBMP Support in BGPStream

20

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Task 1.2 - Add support for Kafka encapsulation
- Based on Librdkafka (https://github.com/edenhill/librdkafka)

•Data Interfaces:
- Broker; Single file; CSV

•Single format
- MRT

•Single transport
- Dump files (http/FS)

•Data Interfaces:
- Broker; Single file; CSV; Kafka

•Formats:
- MRT; BMP; …

•Transports:
- Dump files; Kafka

BEFORE NOW

TASK 1
Native OpenBMP Support in BGPStream

21

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Task 1.3 - Deserialize BMP data into BGPStream
- Deserialization

-Wrote C code inspired by OpenBMP’s C++
-Created a standalone library libParseBGP (Task 3.1)

- Good engineering practice (cleanness, modularity, …)
- Provide the community with a BMP/MRT/BGP parsing library

- New format for encapsulation of BMP data
- OpenBMP currently uses an ascii encapsulation
- Needed timestamps, info about router and collector, …
- binary/ascii

https://github.com/CAIDA/libparsebgp

LIBPARSEBGP
https://github.com/CAIDA/libparsebgp

22

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Parses BGP, BMP, MRT from a buffer into a C structure
•Parsed data is “close to the RFC”.

- library doesn’t assume anything about how you will use it -- e.g., addresses are left as 4, 16
byte network-byte ordered values

•Data is parsed into a reusable structure
- dynamic memory inside the structure is reused between parses -- avoids free/mallocs and
drastically improves performance

•Many path attributes supported
- https://github.com/CAIDA/libparsebgp/blob/master/lib/bgp/parsebgp_bgp_update.h#L225

•Support for selectively parsing features
- clients who only need specific features, e.g., AS Path, Community attributes, don’t need to
parse the entire message

TASK 2
Distribute BMP data

23

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Task 2.1 - Run a public collector
•Nobody had experience in operating a public BMP collector
•CAIDA’s Public BGPStream OpenBMP Collector

•bmp.bgpstream.caida.org:9092
•Already providing feeds

-1 Cisco router, 1 Cisco peer (AS11017 - CSN)  
 

•Task 2.2 - Coordinate with RouteViews
•Operated in collaboration with RouteViews

-1 RV router, 3 RV peers (operational routers from Level3, HE, AT&T)
- Work in progress, slowly will add more and more
- Lesson learned: non negligible load on router due to BMP

http://bmp.bgpstream.caida.org:5000

TASK 2
Distribute BMP data

24

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Task 2.3 - Tutorial to use BGPStream w/ your router/
collector
•Leverages the OpenBMP docker container

•https://bgpstream.caida.org/v2-beta
•live demo now

 
 

•Shows how to analyze your
private router’s BMP feed
from pyBGPStream

http://bgpstream.caida.org/

TASK 3
Cooperate w/ OpenBMP group

25

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Great teamwork — Thank you Serpil+Tim!
•libParseBGP (see previous slides)

•Contributions to OpenBMP
- NAT/PAT support
- Router connection rate limiting
- New (optional?) OpenBMP encapsulation format
- Minor bug fixes

•Trained 2 UC San Diego master students

Ojas Gupta Induja Sreekanthan

TASK 3
Cooperate w/ OpenBMP group

26

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Dissemination of results & work in progress
•IRTF and IETF ’98 - (irtf-open and rtgwg)
•TMA PhD School, Dublin, Ireland (Lecture + Lab ~40 PhD students)

•Tim’s Keynote at SIGCOMM BigData Workshop (BIG-DAMA)

•v2 ml-announcements and presentations (NANOG, IETF, ACM conferences, …) todo

V2-BETA1 AND APPS

27

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

V2.0 BETA 1
https://bgpstream.caida.org/v2-beta

28

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Public BMP feed bmp.bgpstream.caida.org:9092
•BGPStream apps can read BMP
•Projects ready to use it

- IODA [IMC’16 and others] - 24/7 Internet Outage detection
- speeding up BGP detection — dashboards at ioda.caida.org 

- ARTEMIS [wip ToN] - Self-operated BGP prefix hijacking detection and mitigation
- open source framework  

- SWIFT [SIGCOMM’17] - Fast rerouting upon remote outages
- downloadable demo  

- SuperSWIFT [wip SIGCOMM] - P4 version of Swift. Collab with Internet2
- analysis of data vs control plane

swift.ethz.ch

FUTURE WORK

29

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

V2 RELEASE
New features in addition to BMP

30

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•BGPStream v2.0 expected to be released in Feb 2018
•New license: BSD
•v2 features:

- RIPE RIS streaming support
- RPKI validation (RTRlib)
- Broker support for public BGPStream BMP feed
- Local (optional) caching of dump files
- New high-level Python API
- New filter interface with a "BPF-like" syntax (hackathon contribution)
- Performance improvements (new MRT parser, better resource management, …)
- Bugfixes

todo

todo

todo

BGP ANALYTICS
Prefix hijacking detection and more

31

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Leverages BGPStream
•Combines control-plane and data-plane measurements

- detects interesting BGP events (e.g., MOAS, new edges in the topology, …)
- and triggers traceroute measurements from Ark/RIPE probes

•Classifies events and generates alerts
•Visualization dashboard to analyze the events
•Based on NSF funding ending soon

THANKS

32

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

bgpstream.caida.org
bgpstream.caida.org/v2-beta  

alberto@caida.org

