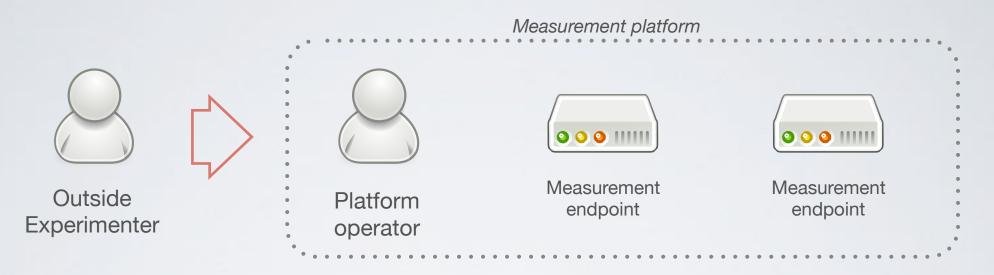

PacketLab: A Universal Measurement Endpoint Interface

Bradley Huffaker *with* Kirill Levchenko, Amogh Dhamdhere, kc claffy, Mark Allman, Vern Paxson



Edge Measurement

- Active measurement from end hosts where vantage point is an experimental factor
 - Censorship and traffic tampering
 - Consumer bandwidth/latency
 - Network topology
- Requires access to measurement endpoints at edge
 - Costly to deploy and maintain

Using Existing Endpoints

- Platform operator controls and maintains measurement endpoints
- Outside experimenter wants to use platform for her own experiment
- Several platforms already support outside experiments

Measurement Platforms

Obstacles to Sharing

Compatibility

Each platform has its own usage model and API, experimenter must port experiment to each one

Incentives

Operator bears some of the costs of outside experiment

Trust

Operator must trust experimenter or verify each experiment

How do we lower barriers to sharing?

PacketLab Overview

- Light-weight universal endpoint interface
 - Write experiment once, run anywhere
 - Easy to port to new platforms
- Remove platform operator from experiments
 - Shifts cost of experiment to experimenters
- Give platform operators fine-grained control over allowed outside experiment behavior
 - Reduces burden of trust between operators and experimenters

Disclaimer

- Not a new measurement platform
- Complements (does not replace) existing interfaces
- Single point in large design space
 - Want to get critical feedback and stimulate discussion
- Preliminary design, not a finished product
 - Alpha-quality proof of concept prototypes

Key Technical Ideas

Move experiment logic from network endpoint

- Use certificates for access control
- Endpoint-experimenter rendezvous (won't cover in talk; please see paper)
- Monitor programs define allowed experiment behaviors

Traditional Endpoint Model

Experiment Controller

Control logic

Endpoint

Experiment logic

Network interface

PacketLab Endpoint Model

Experiment Controller

Control logic

Experiment logic

PacketLab Interface ------

Endpoint

Network interface

PacketLab Endpoint

- PacketLab endpoint ==
 VPN endpoint with measurement knobs and dials
- TCP/UDP sockets and raw IP I/O (where available)
- Compatible with multiple deployment regimes
 - Software agent, hardware agent, dedicated server
- Minimal assumptions about underlying hardware
 - Easy to support PacketLab interface on endpoints

Endpoint API

- Resembles Berkley sockets
- Controller schedules packet to be sent immediately or at future time (at_time)
- Controller polls for received packets (npoll)
 - Packets not forwarded to controller immediately
 - Allows controller to manage access link load

nopen(sktid, proto)
nopen(sktid, proto, locport,
 remaddr, remport)
nclose(sktid)
nsend(sktid, at_time, data)
npoll(sktid, until_time)
ncap(sktid, filt, until_time)

Tells endpoints exactly …

- What packets to send and when
- Which packets to capture
- Run by experimenter, not endpoint operator
 - Shifts cost from operator to experimenter
- Ephemeral: exists for duration of experiment only
- Needs to implement all protocols used in experiment

Rendezvous

- Experiments distribution on *pull* model: Endpoints contact experiment controllers for experiments
 - Endpoints need a way to find experiment controllers
- Rendezvous server: Directory of active experiments
- Experimenters *publish* experiments to rendezvous server
- Endpoints subscribe to (poll for) experiments
- Need a handful of community-operated servers
 - Like NTP, DNS, or PGP servers

Access Control

- Operators give experimenters digitally signed certificates granting access to their platform (endpoints)
 - Out of band, based on operator's specific policy

Each endpoint has a root of trust (set of public keys)

- Only agrees to do experiment signed by a trusted key
- Operators install their key when they deploy endpoint
- Experiment controller provides certificate to each endpoint to prove it is allowed to do experiment
 - Certificates can be chained for delegation
 - No direct communication between operator and endpoint

Control of Experiments

- Operator will want to restrict the kinds of experiments and experimenter can run on endpoints
 - Today this is based on trust relationships
- Operator specifies experiment monitor program that defines what packets experimenter can send during experiment
 - Interpreted program encoding fine-grained access control policy
 - Similar to BPF, but need slightly richer mechanism
- Monitor program attached to experiment certificates
 - Presented to endpoint with certificate
 - Part of signed certificate (verified to be from operator)

Conclusion

- PacketLab: an universal interface to network measurement platforms (endpoints)
- Value proposition for experimenters:
 a single interface to multiple measurement platforms
 - Write experiment once, run anywhere
- Value proposition for platforms operators: gives experimenters controlled access to your platform