PacketLab: A Universal Measurement Endpoint Interface

Bradley Huffaker with Kirill Levchenko, Amogh Dhamdhere, kc claffy, Mark Allman, Vern Paxson
Edge Measurement

- Active measurement from end hosts where vantage point is an experimental factor
 - Censorship and traffic tampering
 - Consumer bandwidth/latency
 - Network topology

- Requires access to measurement endpoints at edge
 - Costly to deploy and maintain
Using Existing Endpoints

- Platform operator controls and maintains measurement endpoints
- Outside experimenter wants to use platform for her own experiment
- Several platforms already support outside experiments
Measurement Platforms

- Dedicated server: CAIDA Archipelago (Ark), PlanetLab
- Hardware agent: BISmark, SamKnows, RIPE Atlas
- Software agent: OONI Probe, ICSI Netalyzr
Obstacles to Sharing

❖ Compatibility
Each platform has its own usage model and API, experimenter must port experiment to each one

❖ Incentives
Operator bears some of the costs of outside experiment

❖ Trust
Operator must trust experimenter or verify each experiment

How do we lower barriers to sharing?
PacketLab Overview

❖ Light-weight universal endpoint interface
 • Write experiment once, run anywhere
 • Easy to port to new platforms

❖ Remove platform operator from experiments
 • Shifts cost of experiment to experimenters

❖ Give platform operators fine-grained control over allowed outside experiment behavior
 • Reduces burden of trust between operators and experimenters
Disclaimer

- Not a new measurement platform
- Complements (does not replace) existing interfaces
- Single point in large design space
 - Want to get critical feedback and stimulate discussion
- Preliminary design, not a finished product
 - Alpha-quality proof of concept prototypes
Key Technical Ideas

❖ Move experiment logic from network endpoint

❖ Use certificates for access control

❖ Endpoint-experimenter rendezvous
 (won’t cover in talk; please see paper)

❖ Monitor programs define allowed experiment behaviors
Traditional Endpoint Model

Experiment Controller

- Control logic

Endpoint

- Experiment logic
- Network interface
PacketLab Endpoint Model

Experiment Controller

Control logic
Experiment logic

PacketLab Interface

Network interface

Endpoint
PacketLab Endpoint

- PacketLab endpoint == VPN endpoint with measurement knobs and dials
- TCP/UDP sockets and raw IP I/O (where available)
- Compatible with multiple deployment regimes
 - Software agent, hardware agent, dedicated server
- Minimal assumptions about underlying hardware
 - Easy to support PacketLab interface on endpoints
Endpoint API

❖ Resembles Berkley sockets

❖ Controller schedules packet to be sent immediately or at future time \((\text{at_time})\)

❖ Controller polls for received packets \((\text{npoll})\)
 • Packets not forwarded to controller immediately
 • Allows controller to manage access link load

\[
\begin{align*}
n\text{open}(\text{sktid}, \text{proto}) \\
n\text{open}(\text{sktid}, \text{proto}, \text{locport}, \text{remaddr}, \text{remport}) \\
n\text{close}(\text{sktid}) \\
n\text{send}(\text{sktid}, \text{at_time}, \text{data}) \\
n\text{poll}(\text{sktid}, \text{until_time}) \\
n\text{cap}(\text{sktid}, \text{filt}, \text{until_time})
\end{align*}
\]
Experiment Controller

- Tells endpoints exactly ...
 - What packets to send and when
 - Which packets to capture

- Run by experimenter, *not* endpoint operator
 - Shifts cost from operator to experimenter

- Ephemeral: exists for duration of experiment only

- Needs to implement all protocols used in experiment
Rendezvous

- Experiments distribution on *pull* model: Endpoints contact experiment controllers for experiments
 - Endpoints need a way to find experiment controllers
- Rendezvous server: Directory of active experiments
- Experimenters *publish* experiments to rendezvous server
- Endpoints *subscribe* to (poll for) experiments
- Need a handful of community-operated servers
 - Like NTP, DNS, or PGP servers
Access Control

❖ Operators give experimenters *digitally signed certificates* granting access to their platform (endpoints)
 • Out of band, based on operator’s specific policy

❖ Each endpoint has a root of trust (set of public keys)
 • Only agrees to do experiment signed by a trusted key
 • Operators install their key when they deploy endpoint

❖ Experiment controller provides certificate to each endpoint to prove it is allowed to do experiment
 • Certificates can be chained for delegation
 • *No direct communication between operator and endpoint*
Control of Experiments

❖ Operator will want to restrict the kinds of experiments and experimenter can run on endpoints
 • Today this is based on trust relationships

❖ Operator specifies experiment monitor program that defines what packets experimenter can send during experiment
 • Interpreted program encoding fine-grained access control policy
 • Similar to BPF, but need slightly richer mechanism

❖ Monitor program attached to experiment certificates
 • Presented to endpoint with certificate
 • Part of signed certificate (verified to be from operator)
PacketLab: an universal interface to network measurement platforms (endpoints)

Value proposition for experimenters: a single interface to multiple measurement platforms
- Write experiment once, run anywhere

Value proposition for platforms operators: gives experimenters controlled access to your platform