ARTEMIS: Neutralizing BGP Hijacking within a Minute

Alberto Dainotti alberto@caida.org

Center for Applied Internet Data Analysis University of California, San Diego

Joint work with:

Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dimitropoulos, Danilo Cicalese, Alistair King

INTERNET ROUTE HIJACKING a threat to your organization and to critical infrastructure

Center for Applied Internet Data Analysis University of California San Diego

INTERNET ROUTE HIJACKING a threat to your organization and to critical infrastructure

Polluted AS (remote users)

Center for Applied Internet Data Analysis University of California San Diego Foundation for Research and Technology-Hellas Inspire Group

BAD_AS

simple hijack

INTERNET ROUTE HIJACKING a threat to your organization and to critical infrastructure

oAS (your network)

Polluted AS (remote users)

man-in-the-middle (MITM) hijack

BAD AS

Center for Applied Internet Data Analysis University of California San Diego

INTERNET ROUTE HIJACKING many MITM events documented

oAS (your network)

Polluted AS (remote users)

Nov. 2013

BAD AS

WIRED

The attackers initiated the hijacks at least 38 times, grabbing traffic from about 1,500 individual IP blocks sometimes for minutes, other times for days — and th http://research.dyn.com/2013/11/mitm-internet-hijacking/

BGP UNIVERSE before ARTEMIS

Center for Applied Internet Data Analysis University of California San Diego

THIRD PARTY SERVICES **both theoretical and practical issues**

Evasion

Only simple attack configurations are considered

Accuracy

- Potential for lots of false positives
- or alternatively lots of false negatives

Speed

Manual verification then manual mitigation

Privacy

Need to share private information

BGP UNIVERSE before ARTEMIS

Center for Applied Internet Data Analysis University of California San Diego

ARTEMIS IN A NUTSHELL *a ptolemaic revolution :-*)

Center for Applied Internet Data Analysis University of California San Diego

ARTEMIS IN A NUTSHELL

...then suddenly everything makes sense

• Evasion

• Covers all attack configurations

Accuracy

- 0% FP, 0% FN: for most attack configurations
- •0% FN for the remaining ones (alternatively manage FP-FN trade-off)

Speed

Automated mitigation: neutralize attacks in a minute

Privacy & Flexibility

- full privacy
- per-prefix + per-event type, configurable mitigation

PUBLIC MONITORING INFRASTRUCTURE enables visibility of all significant events

BGP HIJACKING TAXONOMY 3 dimensions

- Based on how the "attacking" AS Path looks like
 - **Type 0** hijack: <prefix: **BAD_AS**, ... > (a.k.a. "prefix origin hijack")
 - Type I hijack: <prefix: oAS, BAD_AS, ... >
 - Type 2 hijack: <prefix: oAS, AS1, BAD_AS, ...>
 - **Type N** hijack: <prefix: oAS, AS1, ..., **BAD_AS**, ...>
 - **Type U** hijack: <prefix: unaltered_path>
- 2) Based on the prefix: announced prefix or sub-prefix, or squatting
- •3) Based on what happens on the data-plane: Black Holing (BH), Imposture (IM), Man in the Middle (MM)

•

ATTACK COVERAGE ARTEMIS vs previous literature

TABLE 1: Comparison of BGP prefix hijacking detection systems/services w.r.t. ability to detect different classes of attacks.

Class of Hijacking Attack			Control-plane System/Service			Data-plane System/Service		Hybrid System/Service		
Affected	AS-PATH	Data	ARTEMIS	Cyclops	PHAS	iSpy	Zheng et al.	HEAP	Argus	Hu et al.
prefix	(Type)	plane		(2008) [26]	(2006) [41]	(2008) [66]	(2007) [67]	(2016) [57]	(2012) [61]	(2007) [37]
Sub	U	*	\checkmark	×	×	×	×	×	×	×
Sub	0/1	BH	\checkmark	×	\checkmark	×	X	\checkmark	\checkmark	\checkmark
Sub	0/1	IM	\checkmark	×	\checkmark	×	×	\checkmark	×	\checkmark
Sub	0/1	MM	\checkmark	×	\checkmark	×	Х	×	×	×
Sub	≥ 2	BH	\checkmark	×	×	×	×	\checkmark	\checkmark	\checkmark
Sub	≥ 2	IM	\checkmark	×	×	×	×	\checkmark	×	\checkmark
Sub	≥ 2	MM	\checkmark	×	×	×	×	×	×	×
Exact	0/1	BH	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark
Exact	0/1	IM	\checkmark	\checkmark	\checkmark	×	\checkmark	×	×	\checkmark
Exact	0/1	MM	\checkmark	\checkmark	\checkmark	×	\checkmark	×	×	×
Exact	≥ 2	BH	\checkmark	×	×	\checkmark	×	×	\checkmark	\checkmark
Exact	≥ 2	IM	\checkmark	×	×	×	\checkmark	×	×	\checkmark
Exact	≥ 2	MM	\checkmark	×	×	×	\checkmark	×	×	×

ACCURATE DETECTION becomes trivial in most of the cases

Hijacking Attack			ARTEMIS Detection					
Prefix	AS-PATH	Data	False	False	Detection			
	(Type)	Plane	Positives (FP)	Negatives (FN)	Approach			
Sub-prefix	*	*	None	None	Sec. 5.2			
Squatting	*	*	None	None	Sec. 5.2			
Exact	0/1	*	None	None	Sec. 5.3			
Exact	≥ 2	*	< 0.3/day for $> 80%$ of ASes	None	Sec. 5.4			
				ed w/o using information from local routers)	Stage 1			
Exact	≥ 2	*	None for 89% of ASes	< 4%	Sec. 5.4			
			$(T_{s2} = 5min; alert threshold > 1 more$	nitors, <i>i.e.</i> , FN for events with negligible visible impact)	Stages 1+2			

TYPE ≥ 2 HIJACKS Stage I

• Triggered when: a BGP update (for a monitored prefix) whose AS-PATH contains a N-hop AS-link (N \geq 2) that is not included in the previously verified AS-links list

• Legitimate if this link has been observed in the *opposite direction* in the AS-links list from monitors and local BGP routers (10 months history).

<prefix: oAS, neighborAS, BAD_AS, ...> attack announcement
<any prefix: ..., BAD_AS, neighborAS, ..., BAD_AS, ...> pre-attack fails
<any prefix: ..., BAD_AS, neighborAS, ..., 2ndBAD_AS, ...> pre-attack ok

TYPE ≥ 2 HIJACKS Stage 2 w/ FN of small impact

•Stage 2

- wait 5 minutes
- Recheck tables
- Optional: decisions based on observable impact

MITIGATION

in the paper: simulation + experiments on the actual Internet

• DIY: de-aggregate while you can!

• When you can't, maybe ask help to the DoS mitigation guys

TABLE 6: Mean percentage of polluted ASes, when outsourcing BGP announcements to organizations providing DDoS protection services; these organizations can provide highly effective outsourced mitigation of BGP hijacking.

	without	top					
	outsourcing	ISPs	AK	CF	VE	IN	NE
Type0	50.0%	12.4%	2.4%	4.8%	5.0%	7.3%	11.0%
Type1	28.6%	8.2%	0.3%	0.8%	0.9%	2.3%	3.3%
Type2	16.9%	6.2%	0.2%	0.4%	0.4%	1.3%	1.1%
Type3	11.6%	4.5%	0.1%	0.4%	0.3%	1.1%	0.5%

ARTEMIS TOOL soon available

- Open source
- Based on CAIDA BGPStream
- EU side of development sponsored by RIPE NCC
- Implementation challenges
 - automated configuration
 - mitigation

THANKS alberto@caida.org

