Atlas & Ark data in Google BigQuery

<u>sds@caida.org</u> <u>sds@ripe.net</u>

September 5th, 2019

motivation

- Atlas and Ark both collect a lot of data
- "big data" is now old-hat and commodity platforms are pretty well established
 - m-lab uses bigquery
 - censys uses bigquery
- they have bigger datasets than we do

motivation

- the RIPE NCC is exploring putting data into BigQuery
- using the platform and looking for concrete uses against RIPE NCC data can help prove its worth
 - or in contrast, can confirm its expense
- element of testing the platform and the data pipeline, not just doing analysis
 - feedback loop: "is this useful?"
- but this was all new to me
 - for my AIMS2019 talk I had ~3 days experience with bigquery

BigQuery

- 'serverless', 'real-time', 'analytics' 'data-warehouse'
 'platform as a service'
 - no ops
 - queries are fast, but not immediate
 - SQL-interface on top of datasets
 - the ability to just throw in tera/petabytes of data

goals

- Multiple:
 - understand how to use this platform and what work it is good for
 - build use-cases:
 - operationally-motivated work
 - research-motivated work
 - throw raw data in, and operate from first-principles

\$\$BigQuery\$\$

- "Doesn't this cost money?"
 - yes!
 - but for many studies, it's likely to be cheaper than the capital + operational spend on rolling your own
 - and currently the NCC provides data, not compute

Atlas traceroute data was being funnelled in here before I started working on it in April

Can we get to the point of answering real questions?

Atlas runs multiple *classes* of measurements:

- 1. built-in measurements; https://atlas.ripe.net/docs/built-in/
 - all probes ping/traceroute/dns to DNS root servers & Atlas anchors
- 2. topology sweep: UDP + ICMP traceroutes
- 3. anchoring measurements
 - full-mesh ping/traceroute between all anchors
 - random collection of other probes ping/traceroute each anchor

4. user-defined measurements; public + private

- msm_id >= 1,000,000
- is_public = [true|false]

- What fraction of the archived RIPE Atlas data was generated from each of the measurement categories above?
- How has this evolve?

multiple sources

\$1.39; \$3.41 for a prior query for an intermediate table

targets per hour

\$2.17*

user measurements

\$1.39 (data from same queries as earlier slide)

Atlas (user-defined) targets

Atlas, unique user-defined targets per hour

\$2.17*

Ark data

• IPv4

https://data.caida.org/datasets/topology/ark/ipv4/probe-data/team-1/daily/

• IPv6

http://data.caida.org/datasets/topology/ark/ipv6/probe-data/

Ark data

\$0.03

- Size of dataset
 - in bigquery, 41.5GB/day (IPv4), and 18.5GB/day (IPv6)

How long does it take Atlas to complete IPv4 and IPv6 topology sweeps?

Atlas (topology) targets

\$0.12

How rapidly does the set of userdefined targets grow?

Atlas (user-defined) targets

- Aim: characterise the diversity in the IPv4 and IPv6 topology data collected from each platform, in terms of vantage points, targets, and intermediate hops, along the following granularities:
 - BGP-routed prefixes,
 - networks (AS-level),
 - network types, and
 - geographic coverage?
- What do the platforms observe differently from each other?

responding addresses

- start to look at the diversity in the collected IPv4 and IPv6 topology data
- both platforms

Atlas responding addrs

\$14.40

Atlas responding addrs

\$1.93

Ark responding addrs

\$0.85

Prefix-matching

- BigQuery doesn't understand what a subnet is
- It does understand *ranges*, and IP addresses are just numbers

Longest-prefix Matching

- Matching is relatively easy
- Taking a set of matches and choosing the one with the longest prefix: trickier (in an SQL language)
 - but definitely achievable

```
1 -- Select set of IPs here
 2 WITH ips AS
 3 (
    SELECT distinct(rh.from) as ip
 4
 5 FROM `data-test-194508.prod.traceroute_atlas_prod`, unnest(hops) as h, unnest(resultHops) as rh
 6
    WHERE af = 6
 7),
 8
 9 -- Select prefixes from BGP table here
10 filtered bgp table AS
11 (
12 SELECT distinct prefix, start, foo.end, masklen, origin
13 from `data-test-194508.sds test.rib 20190424 1600` foo
14 WHERE af = 6
15),
16
17 -- Meat of the join happens here.
18 -- JOIN will lead to combinatorial explosion so minimise first by matching
19 -- on a /29, then match on the value actually in the BGP table.
20 -- Will result in multiple rows if #matches > 1
21 -- Will result in NULLs if #matches == 0
22 matched_results AS (
23
    SELECT
              ips.*, bgp.*
24 FROM
              ips
25 LEFT JOIN filtered_bgp_table bgp
26 ON
              NET.IP TRUNC(NET.IP FROM STRING(ip), 29) = NET.IP TRUNC(bgp.start, 29)
27
    AND
              (NET.IP FROM STRING(ip) BETWEEN bgp.start AND bgp.end)
28),
29
30 -- For each IP:origin, retain the longest prefix only
31 matched results lpm AS (
32
   with a AS (
33
       select distinct ip, max(masklen) as m
34
      from matched results
35
       group by ip
36
   )
37 SELECT distinct b.*
38 FROM matched_results b
39 JOIN a
     ON (b.ip = a.ip and b.masklen = a.m) or (b.prefix is null)
40
41),
42
43 -- Aggregate multiple origins into one array
44 aggred asns AS (
45 -- IGNORE NULLS here is important in the case that there is no match in this BGP table
46 select ip, ARRAY_AGG(origin IGNORE NULLS) as origins
47 from matched results lpm
48 group by ip
49)
50
51 -- Spit out everything
52 select *
53 from aggred asns
```

Platform Comparison?

- Can we just start by looking at:
 - IPs observed
 - day/week
 - IP-level adjacencies observed
 - day/week
 - AS-level adjacencies observed
 - day/week

Observed per day:

IPv4	Atlas	Ark	Atlas ∩ Ark
Addrs	793 , 342	4,811,733	376 , 098
/24s	394 , 368	2,344,294	233,108
ASNs	45 , 154	36,589	31,033

IPv6	Atlas	Ark	Atlas ∩ Ark
Addrs	164,989	282,238	109,496
/48s	30 , 787	56,501	24,977
ASNs	8,305	10,165	7,757

Observed per week:

IPv4	Atlas	Ark	Atlas ∩ Ark
Addrs	1,117,248	41,824,271	593 , 896
/24s	496 , 282	3,632,743	372,278
ASNs	45 , 160	36,589	31,037

IPv6	Atlas	Ark	Atlas ∩ Ark
Addrs	239,417	1,792,204	144,493
/24s	34,836	143,445	27,215
ASNs	8,307	10,165	7,757

Adjacencies

- This is trickier, but interesting
- The language operates on rows and columns, but rows are distinct
- Traceroute results as rows: not useful
- But, arbitrary code is acceptable

Adjacencies

ipFrom	dstAddress	dstName	startTime	af	parisId	msmld	prbld	hops.hop	hops.resultHops.err	hops.resultHops.rtt	hops.resultHops.from
2001:67c:6ec:201:145:220:0:55	2001:dc4::1	2001:dc4::1	2019-08-01 00:00:26 UTC	6	0	1430809	6031	1		0.7860000133514404	2001:67c:6ec:201:145:220:0:1
										0.8059999942779541	2001:67c:6ec:201:145:220:0:1
										0.5960000157356262	2001:67c:6ec:201:145:220:0:1
								2		0.7689999938011169	2001:7f8:1::a500:6939:1
										0.9020000100135803	2001:7f8:1::a500:6939:1
										0.740000095367432	2001:7f8:1::a500:6939:1
								3		9.303999900817871	2001:470:0:431::2
										9.35099983215332	2001:470:0:431::2
										9.307000160217285	2001:470:0:431::2
								4		13.701000213623047	2001:470:0:410::2
										13.619999885559082	2001:470:0:410::2
								5		73.25399780273438	2001:470:0:440::1
										73.4219970703125	2001:470:0:440::1
										73.26699829101562	2001:470:0:440::1
								6		73.39399719238281	2001:470:0:20a::1
										73.28099822998047	2001:470:0:20a::1
										73.39900207519531	2001:470:0:20a::1
								7		95.32099914550781	2001:470:0:270::2
										92.66999816894531	2001:470:0:270::2
										95.2229995727539	2001:470:0:270::2
								8		103 51699829101562	2001-470-0-1862

```
1 CREATE TEMP FUNCTION GetHops(srcAddr STRING, json str STRING)
2 RETURNS ARRAY<STRUCT<
       a STRING,
 3
      b STRING>>
 4
 5 LANGUAGE js
 6 AS """
7 function keysrt(key) {
    return function(a,b){
8
       if (a[key] > b[key]) return 1;
9
10
   if (a[key] < b[key]) return -1;
       return 0;
11
12
    }
13 }
14
15 var row = JSON.parse(json str);
16 var out array = [];
17
18 row.sort(keysrt('probeTtl'));
19 for (var i = 0; i < row.length; i++) {
   // [snip]
20
21 // logic
   // [snip]
22
23
24 return out array;
25 """;
26
27 WITH filtered traceroutes AS (
    SELECT startTime as start time, srcAddress as src addr, hops
28
   FROM `data-test-194508.caida.ark traces ipv6`
29
    WHERE startTime > "2019-08-01" AND startTime < "2019-09-01"
30
    AND srcAddress != ""
31
32)
33
34 SELECT start time, src addr, GetHops(src addr, to json string(hops)) as h
35 FROM filtered traceroutes
36
```

Adjacencies*

45	2019-07-12 01:00:00 UTC	4	192.168.1.10	188.176.98.1	83.88.1.81
				83.88.1.81	198.32.118.22
				198.32.118.22	209.148.237.1
				209.148.237.1	209.148.229.225
				209.148.229.225	209.148.235.234
				209.148.235.234	209.148.227.138
				209.148.227.138	209.148.233.98
46	2019-07-12 01:00:00 UTC	4	192.168.1.10	188.176.98.1	83.88.1.81
				83.88.1.81	198.32.118.22
				198.32.118.22	209.148.231.49
47	2019-07-12 01:00:00 UTC	4	192.168.1.10	188.176.98.1	83.88.1.81
				83.88.1.81	198.32.118.22
				198.32.118.22	209.148.231.49
				209.148.231.49	209.148.229.225
				209.148.229.225	209.148.235.234
				209.148.235.234	64.71.240.2
				64.71.240.2	69.63.243.42

Adjacencies*

- IPv4+IPv6 level forward-adjacencies (1 day):
 - Atlas: 2,603,418
 - Ark: 6,196,998
 - Intersection: **921,464**
- AS level forward-adjacencies (1 day):
 - Atlas: 102,766
 - Ark: 76,741
 - Intersection: **51,401**

* no external validation on any of these yet!

\$0.50? adjacency computation; \$0.25? longest-prefix for 1 day; \$0.25 (AS mapping computation)

back to money

1-31 Aug 2019 BigQuery Analysis: 86.647 Tebibytes (Source:bq-test [bq-test-237918])

US\$428.24

- 95,269,384,011,907 bytes of data queried
- \$1 ~= 205GB (at that rate)
- free tier offers:
 - one-time \$300 free credit (~60TB of queries)
 - each month: 1TB free queries

back to money

- can you accidentally spend a lot of cash?
 - yes of course
- you can also set up spending alerts
- <u>https://edu.google.com/programs/credits/research/</u>
- <u>https://cloud.google.com/free/</u>

Query editor	HIDE EDITOR
1SELECTDATETIME2FROMdata-tes3GROUP BYts4ORDER BYts	E_TRUNC(DATETIME(startTime), HOUR) as ts, COUNT(DISTINCT dstAddress) as count st-194508.caida.ark_traces_ipv6`
🕞 Run 🔻 📩 Sav	ve query Save view Schedule query - More -
	This query will process 13.8 GB when run.
Query results	▲ SAVE RESULTS ▼ MEXPLORE WITH DATA STUDIO
Query complete (6.8 sec elap	osed, 13.8 GB processed)
Job information Results	JSON Execution details
Job ID	bq-test-237918:EU.bquxjob_4f37a56b_16cff65cb8b
User	sdstrowes@gmail.com
Location	European Union (EU)
Creation time	4 Sep 2019, 20:12:09
Start time	4 Sep 2019, 20:12:09
End time	4 Sep 2019, 20:12:16
Duration	6.8 sec
Bytes processed	13.77 GB
Bytes billed	13.77 GB
Job priority	INTERACTIVE
Destination table	Temporary table
Use legacy SQL	false

ark_traces_ipv6		(COPY TABLE				
This is a partitioned table. Learn more							
Schema Details Preview	W						
Description 🖍 None			Labels 🖍 None				
Table ID	data-test-1945	508·caida a	ark traces ipv6				
Table size	663.23 GB	, o o roundan	unc_uuooo_ipro				
Number of rows	406,533,406						
Created	30 Jul 2019, 0	1:46:35					
Table expiry	Never						
Last modified	4 Sep 2019, 01	:32:22					
Data location	EU						

direction

this actually looks pretty feasible as an ongoing project

direction

- want: eventually to offer public access to data
 - maybe the way measurement-lab does it
 - maybe the way <u>censys.io</u> does it
 - maybe via Google's public dataset program
 - tbd!
- current project will be wrapped
 - new project will be set up, with clearer user permissions, better-aligned schemas

future

- I'm back at the NCC from October 1st
- This project will iterate
 - More measurement types: ping, etc
 - Sampled historical/backfilled data
 - More consistent Ark data!
 - ITDK
 - IXPs dataset
 - geo dataset(s)

contact

sds@ripe.net

examples

https://gist.github.com/sdstrowes/c2e36b446cee4b8a5ff1e62d1c14e2e0