# APPLE: Alias Pruning by Path Length Estimation

Alex Marder

UC San Diego / CAIDA



#### Overview

- 1. What is alias resolution and why do we need it?
- 2. Current state-of-the-art
- 3. APPLE methodology
  - A. Common successor groups
  - B. Prune with pings from many vantage points (VPs)
- 4. Results from two ground truth networks
- 5. Conclusion



- 1. What is alias resolution and why do we need it?
- 2. Current state-of-the-art
- 3. APPLE methodology
  - A. Common successor groups
  - B. Prune with pings from many vantage points (VPs)
- 4. Results from two ground truth networks
- 5. Conclusion

# What is Alias Resolution?

Grouping addresses by their physical router



# Why is Alias Resolution Important?

Traceroute provides interface addresses
No router identifiers

- Alias resolution helps provide router graph
  - More complete view of the network









# Why is Alias Resolution Important?

Traceroute provides interface addresses
 No router identifiers

- Alias resolution helps provide router graph
  - More complete view of the network









#### Overview

- 1. What is alias resolution and why do we need it?
- 2. Current state-of-the-art
- 3. APPLE methodology
  - A. Common successor groups
  - B. Prune with pings
- 4. Results
- 5. Conclusion

#### Current State-of-the-Art: IP-ID Velocity

#### **IPv4 Packet Header**



#### Current State-of-the-Art: IP-ID Velocity



#### Current State-of-the-Art: hoiho Regex Learning [1]

• Uses IP-ID router groupings as training

• Automatically learn regexes for router IDs in hostnames

- ^[a-z]+-[^\.]+\..+\.([a-z\d]+\.net)\.internet2\.edu\$
  - et-9-1-0.4079.rtsw.phil.net.internet2.edu -> phil.net
  - et-11-0-0.103.rtsw.phil.net.internet2.edu -> phil.net
  - ae-3.4079.rtsw.dall3.net.internet2.edu -> dall3.net

[1] Luckie, M., Huffaker, B., et al.: Learning regexes to extract router names from hostnames. In: IMC (2019)

#### Current State-of-the-Art: hoiho Regex Learning [1]

Uses IP-ID router groupings as training

• Automatically learn regexes for router IDs in hostnames

- ^[a-z]+-[^\.]+\..+\.([a-z\d]+\.net)\.internet2\.edu\$
  - et-9-1-0.4079.rtsw.phil.net.internet2.edu -> phil.net
  - et-11-0-0.103.rtsw.phil.net.internet2.edu -> phil.net
  - ae-3.4079.rtsw.dall3.net.internet2.edu -> dall3.net

[1] Luckie, M., Huffaker, B., et al.: Learning regexes to extract router names from hostnames. In: IMC (2019)

#### Current State-of-the-Art: hoiho Regex Learning [1]

• Uses IP-ID router groupings as training

Automatically learn regexes for router IDs in hostnames

- ^[a-z]+-[^\.]+\..+\.([a-z\d])+\.net\.internet2\.edu\$
  - et-9-1-0.4079.rtsw.phil.net.internet2.edu -> phil
  - et-11-0-0.103.rtsw.phil.net.internet2.edu -> phil
  - ae-3.4079.rtsw.dall3.net.internet2.edu -> dall3

[1] Luckie, M., Huffaker, B., et al.: Learning regexes to extract router names from hostnames. In: IMC (2019)

- IP-ID techniques rely on specific IP implementations
  - IPv6 is even worse

- Cannot reverse lookup many addresses
  - Others lack router identifiers

- IP-ID techniques rely on specific IP implementations
  - IPv6 is even worse

- Cannot reverse lookup many addresses
  - Others lack router identifiers

IP-ID techniques rely on specific IP implementations
IPv6 is even worse

- Cannot reverse lookup many addresses
  - Others lack router identifiers

- IP-ID techniques rely on specific IP implementations
  - IPv6 is even worse

- Cannot reverse lookup many addresses
  - Others lack router identifiers

- IP-ID techniques rely on specific IP implementations
  - IPv6 is even worse

- Cannot reverse lookup many addresses
  - Others lack router identifiers

#### Overview

- 1. What is alias resolution and why do we need it?
- 2. Current state-of-the-art
- 3. APPLE methodology
  - A. Common successor groups
  - B. Prune with pings from many vantage points (VPs)
- 4. Results from two ground truth networks
- 5. Conclusion

• Goal: Reduce reliance on specific router implementations of IP

• Step 1: collect candidate router alias groups from traceroute

• Step 2: prune the groups using pings

Goal: Reduce reliance on specific implementations of IP

• Step 1: collect candidate router alias groups from traceroute

• Goal: Reduce reliance on specific router implementations of IP

• Step 1: collect candidate router alias groups from traceroute

• Goal: Reduce reliance on specific router implementations of IP

• Step 1: collect candidate router alias groups from traceroute

#### Traceroute Responses Provide Inbound Address



#### Common Successors Provide Alias Hints





#### Step 1: Build Common Successor Sets











b

 $R_3$ 



 $R_3$ 

• Goal: Reduce reliance on specific router implementations of IP

• Step 1: collect candidate router alias groups from traceroute

# Step 2: Pruning

• Prune common successor groups using reply path length

#### **IPv4 Packet Header**

| Version                | IHL          | DSCP | ECN | Length   |                 |
|------------------------|--------------|------|-----|----------|-----------------|
| Identification (IP-ID) |              |      |     | Flags    | Fragment Offset |
|                        | TTL Protocol |      |     | Checksum |                 |
| Source                 |              |      |     |          |                 |
| Destination            |              |      |     |          |                 |
|                        |              |      |     |          |                 |

#### Intuition: Destination-Based Forwarding



#### Intuition: Destination-Based Forwarding



# Random Reply TTL Collisions

- Finite range of TTL values
  - 8-bit TTL field
  - 256 possible values



More VPs reduces chances of collision

# Random Reply TTL Collisions

- Finite range of TTL values
  - 8-bit TTL field
  - 256 possible values



More VPs reduces chances of collision
# Coverage vs False Aliases

- Tradeoff between including valid aliases and including false aliases
- Better to exclude invalid aliases alias resolution is transitive



# Coverage vs False Aliases

- Tradeoff between including valid aliases and including false aliases
- Better to exclude invalid aliases alias resolution is transitive



### APPLE Thresholds Control the Tradeoff

1. Minimum match threshold: minimum number of matches required to keep alias pair

2. Acceptance threshold: minimum ratio of matches to comparisons

# APPLE Thresholds Control the Tradeoff

**1.** Minimum match threshold: minimum number of matches required to keep alias pair

*2. Acceptance threshold*: minimum ratio of matches to comparisons

### APPLE Thresholds Control the Tradeoff

1. Minimum match threshold: minimum number of matches required to keep alias pair

2. Acceptance threshold: minimum ratio of matches to comparisons

# Minimum Match Threshold: Birthday Problem

Probability that any 2 people in a group share a birthday

• 
$$p(n,d) \approx 1 - \exp\left(\frac{-n(n-1)}{2d}\right)$$

- *n* number of people
- *d* number of days



# Minimum Match Threshold: Birthday Problem

Probability that any 2 people in a group share a birthday

• 
$$p(n,d) \approx 1 - \exp\left(\frac{-n(n-1)}{2d}\right)$$

- *n* number of people
- *d* number of days



$$p(n,d) \approx 1 - \exp\left(\frac{-n(n-1)}{2d}\right)$$

$$\frac{n(n-1)}{2}$$
: people pairs to compare

$$p(\boldsymbol{a},d) \approx 1 - \exp\left(\frac{-\boldsymbol{a}}{d}\right)$$

#### *a*: number of potential alias pairs

$$p(\mathbf{a}, d) \approx 1 - \exp\left(\frac{-\mathbf{a}}{\mathbf{d}}\right)$$

*a*: number of potential alias pairs*d*: number of days

$$p(a, r, v) \approx 1 - \exp\left(\frac{-a}{r^{v}}\right)$$

*a*: number of potential alias pairs *r*: number of possible reply TTL values *v*: number of vantage points

$$p(v) \approx 1 - \exp\left(\frac{-a}{r^v}\right) < \frac{1}{a}$$

#### v: number of vantage points

Set the minimum match to limit the probability of a random collision to < 1/a

• Order VPs by minimum RTT to potential alias pair addresses

• Order VPs by minimum RTT to potential alias pair addresses

• Order VPs by minimum RTT to potential alias pair addresses

• Order VPs by minimum RTT to potential alias pair addresses

#### Ping Each Address From Every VP



• Minimum match = 6

• Acceptance = 100%



- Acceptance = 100%
  - 1/6 = **16.7%**



- Acceptance = 100%
  - 2/6 = **33.3%**



- Acceptance = 100%
  - 3/6 = **50%**



- Acceptance = 100%
  - 4/6 = **66.7%**



- Acceptance = 100%
  - 5/6 = **83.3%**



- Acceptance = 100%
  - 6/6 = **100%**



- Acceptance = 100%
  - 7/8 = **87.5%**



#### Load Balancing: Prune Valid Alias Pair



#### Load Balancing: Keep Invalid Alias Pair



#### Overview

- 1. What is alias resolution and why do we need it?
- 2. Current state-of-the-art
- 3. APPLE methodology
  - A. Common successor groups
  - B. Prune with pings from many vantage points (VPs)
- 4. Results from two ground truth networks
- 5. Conclusion



|      | ITDK   | Pings Sent | Probed  | Responses | Resp. % | Pairs     |
|------|--------|------------|---------|-----------|---------|-----------|
| IPv4 | 201904 | 201904     | 366,469 | 292,141   | 79.7%   | 5,022,839 |
| IPv6 | 201901 | 201905     | 76,098  | 59,778    | 78.6%   | 563,489   |

https://www.caida.org/data/internet-topology-data-kit/

|      | VPs | ASNs | Countries | Cities |
|------|-----|------|-----------|--------|
| IPv4 | 99  | 71   | 37        | 83     |
| IPv6 | 78  | 61   | 29        | 63     |

https://www.caida.org/projects/ark/locations/

# Ground Truth

• 2 ground truth networks: Internet2 & large US R&E network

|           | Routers |      | Alias Pairs |      | Probed |      | Responses |      |
|-----------|---------|------|-------------|------|--------|------|-----------|------|
|           | IPv4    | IPv6 | IPv4        | IPv6 | IPv4   | IPv6 | IPv4      | IPv6 |
| Internet2 | 42      | 41   | 2176        | 1095 | 719    | 616  | 646       | 536  |
| R&E       | 25      | 16   | 1651        | 137  | 352    | 137  | 352       | 137  |
| Total     | 67      | 57   | 3737        | 1232 | 1071   | 753  | 998       | 673  |

# How Popular is the Most Popular Reply TTL?

• For each VP:

- Select most frequent reply TTL
- Compute % of all replies at that VP

| VP <sub>1</sub> | VP <sub>2</sub> |
|-----------------|-----------------|
| 56              | 59              |
| 56              | 58              |
| 57              | 61              |
| 54              | 58              |
|                 | 57              |
| 50%             | 40%             |

# How Popular is the Most Popular Reply TTL?

• For each VP:

- Select most frequent reply TTL
- Compute % of all replies at that VP

| VP <sub>1</sub> | VP <sub>2</sub> |
|-----------------|-----------------|
| 56              | 59              |
| 56              | 58              |
| 57              | 61              |
| 54              | 58              |
|                 | 57              |
| 50%             | 40%             |

# How Popular is the Most Popular Reply TTL?

• For each VP:

- Select most frequent reply TTL
- Compute % of all replies at that VP

| VP <sub>1</sub> | VP <sub>2</sub> |
|-----------------|-----------------|
| 56              | 59              |
| 56              | 58              |
| 57              | 61              |
| 54              | 58              |
|                 | 57              |
| 50%             | 40%             |

# Maximum % of Individual Reply TTLs



- IPv4: most frequent reply TTL <10% of replies at any VP
  - Estimate 10 possible reply TTLs

- IPv6: most frequent reply TTL <20% of replies at any VP
  - Estimate 5 possible reply TTLs

# Setting the Minimum Match Threshold

**Input Parameters** 1.0 **Brobability of Overlap** 0.6 - 0.0 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -08 $\frac{1}{2}$ 5e7eIPv4 IPv6  $\sim$  $\mathfrak{n}$  $\mathcal{C}$  $\mathcal{C}$ 563 K **Alias Pairs** 5 M Pv4 p(14)Pv6 p(17)10 5 Reply TTLs IPv4 IPv6 0.0 10 11 12 13 14 15 16 17 18 19 20 3 5 8 9 6 2 74  $\left( \right)$ Number of VPs

#### **Estimated Probability of Random Reply TTL Overlap**

# Setting the Minimum Match Threshold


# Setting the Minimum Match Threshold

**Estimated Probability of Random Reply TTL Overlap Input Parameters** 1.0 **Brobability of Overlap** 0.6 - 0.0 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -08  $\frac{10}{10}$ 5c76 IPv4 IPv6  $\sim$  $\bigcirc$  $\mathbb{N}$  $\sum_{i=1}^{n}$ **Alias Pairs** 563 K 5 M Pv4 p(14)p(17)10 5 Reply TTLs IPv4 Pv6 IPv6 0.0 3 5 8 9  $10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18\ 19\ 20$ 2 6 74  $\left( \right)$ Number of VPs

# Setting the Minimum Match Threshold













Combined

All











The number of VPs directly affects correctness and coverage





With more VPs we introduce errors but increase coverage





No more false aliases by 90 VPs



# Conclusion and Future Work

- Similar TPR to Midar+iffinder
- Even better TPR for IPv6 than IPv4
- Combines well with existing alias resolution

- Future work
  - More ground truth use hoiho regexes as pseudo-ground truth
  - Improve pruning to decrease false alias pairs

# Conclusion and Future Work

- Similar TPR to Midar+iffinder
- Even better TPR for IPv6 than IPv4
- Combines well with existing alias resolution

- Future work
  - More ground truth use hoiho regexes as pseudo-ground truth
  - Improve pruning to decrease false alias pairs