FANTAIL:

Facilitating Advances in Network Topology Analysis

Young Hyun CAIDA

Advisory Committee Meeting Oct 8, 2020

- User specifies high-level search criteria
- FANTAIL performs low-level Elasticsearch queries against relevant indexes and traceroute fields

 User specifies high-level search criteria + desired data processing/analyses to apply to matching traces

Query	Selection Criteria
vp V	vantage point is V
vp_as N	vantage point is located in autonomous system (AS) N
vp_country C	vantage point is located in country C
<pre>vp_type T</pre>	vantage point is hosted by an organization of type T
status N	traceroute has success/failure code N
timestamp op N	traceroute has timestamp < = > N
dest_rtt op N	RTT of traceroute destination is $< = > N ms$
pathlen op N	length of traceroute path is $< = > N$
has_mpls T/F	whether there is (T) or is not (F) MPLS in the traceroute path

op is < or = or >

Query	Selection Criteria
dest G	traceroute destination is any address $x \in G$
hop G	traceroutes with any address $x \in G$ appearing at any hop
neigh $G_1 \dots G_n$	traceroutes with <i>n</i> distinct neighboring hop addresses $x_i \in G_i$

T = target address/prefix/AS/country

 $G = target group T_1 | \dots | T_m$

query: neigh 10.0.0/8|192.168.0.0/16 AS1|AS2|AS3 matches any trace with hop addresses x and y such that

$$(x \in 10.0.0/8 \text{ or } x \in 192.168.0.0/16)$$

and $(y \in AS1 \text{ or } y \in AS2 \text{ or } y \in AS3)$

- implemented nearly all queries (except has_mpls)
- implemented 4 analysis modules
 - hop-addrs, ip-links, ip-paths, ip-rtts
- imported most of 2016-2020 team-probing traces into Elasticsearch
 - 45 billion traces; 32.5 TB as stored in Elasticsearch
- implemented interactive web interface for executing queries and data processing

- acquire and deploy cluster to host Elasticsearch
- support annotating traces with DNS, IXP, bdrmapIT, and TNT data
- implement all remaining analysis modules
- implement web API
 - perform queries and execute data processing pipeline
- finish interactive web interface
 - execute data processing pipeline

- hop addresses
- IP links
- IP paths
- IP-RTT distributions

IP links

- extract unique IP links (direct and indirect) from matching traces
- output format:

link count

link:

CSIUS

- A=B for adjacent addresses A and B
- A-n-B for addresses A and B separated by n non-responding hops

count: number of traces where a given link appeared

• responding destination address prefixed with "D"

```
129.122.31.254=129.122.0.5
212.187.195.161-2-4.68.72.254
196.201.62.221=D109.27.101.45
```

IP paths

- extract unique IP paths from matching traces
- output format:

path count

- *path:* a sequence of hops separated by "=" or "-*n*-"
- *count:* number of traces with the given path
 - responding destination address prefixed with "D"
 - multiple responding addresses at hop separated by commas

129.122.31.254=129.122.0.5=41.189.172.33,196.201.62.220 =196.201.62.221=212.187.195.161-2-4.68.72.254 =D109.27.101.45 1


```
129.122.31.254=129.122.0.5=41.189.172.33,196.201.62.220
=196.201.62.221=212.187.195.161-2-4.68.72.254
=D109.27.101.45 1
```

represents the path:

```
129.122.31.254

129.122.0.5

41.189.172.33,196.201.62.220 (two addresses at this hop)

196.201.62.221

212.187.195.161

*

*

4.68.72.254

109.27.101.45 (responding destination)
```

IP-RTT distributions

- calculate min, max, avg, stddev, and percentiles (25th, 50th, 75th, and 95th) of RTTs for each IP hop/destination per monitor
- output format (CSV):

vp=addr, count, min, max, avg, stddev, 25th, 50th, 75th, 95th

vp:	name of vantage point
addr:	hop/destination address
count:	number of RTT samples for the given <i>vp=addr</i>

san-us=1.208.107.222,6741,144.686,809.482,164.122,20.135
,152.469,157.417,175.264,191.777

Discussion

- data processing results download page
 - show file size, count of unique objets, ... what else?
- recent vs. old data
 - are recent years of data the most useful?
 - keep older data in Elasticsearch "frozen index"; slower to access
- annotating traces with DNS, IXP, bdrmapIT, and TNT data
 - how will people use?
 - how to deal with sparseness of these auxillary data?
- suggestions for analysis modules?

- will announce demo FANTAIL account for advisory committee to try out FANTAIL
- email <u>fantail-info@caida.org</u> if interested in personal FANTAIL account for long-term use