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Background

What is the
available
bandwidth?

What is
the RTT?

Where is the
bottleneck link?

Background



Background

Passive measurements

Active measurements



Passive measurements

Monitor ongoing traffic and local state to infer available bandwidth
Video playback buffer
Packet arrival rate

Background



Passive measurements

Drawbacks
Cannot detect when available bandwidth increases

Background



Active measurements

Inject measurement probes into the network and measure network
response to estimate available bandwidth (and choke points)

iPerf
pathload

pathneck
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Active measurements

Drawbacks
Measurement traffic competes with the application traffic

Incurs additional congestion overhead on to the network

Background



Prior Research

Active bandwidth measurement techniques transfer significant
dummy measurement payloads over the network

Leverage useful application data to construct measurement traffic
MGRP (S/GCOMM '09), minProbe (IMC '14)

Prior solutions require Kernel changes or specialized hardware



Prior Research
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Prior Research
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FlowTrace

Implement measurement algorithms in userspace

Modify the userspace FlowTrace program to implement the
desired measurement algorithms

Does not require any specialized hardware or Kernel changes

Design FlowTrace by using basic Linux utilities easing
deployment in the wild



Design framework

Allow in-band implementation of active measurement algorithms to
decrease the associated overheads

|dentify flows and intercept flow packets
Collect packets in userspace
Wait for the desired number of packets to arrive

Construct and transmit the in-band measurement traffic at the
desired rate

o Deign



Challenges

Lack of Kernel-level visibility and packet control in userspace
Control transmission rates of the packets

Minimize the impact of FlowTrace on application performance



Challenges

iptables
Configures firewall to allow or block application traffic

libnetfilter queue and NFQUEUE
NFQUEUE is an iptables target
Delegates verdicts on intercepted packets to userspace
Userspace programs issue verdicts via libnetfilter_queue API



Challenges

libnetfilter queue and NFQUEUE (contd.)
Packets are delegated from the head of the queue
Packets are popped from the queue upon verdict

Packet buffering
Buffer packets in userspace and drop from the queue

Challenges



Challenges

Lack of Kernel-level visibility and packet control in user-space
Intercept packets using iptables and libnetfilter_queue

Control transmission rates of the packets
Buffer packets in memory and respawn at the desired rate

Minimize the impact of FlowTrace on application performance

Per-packet wait timers (t,,,) to avoid latency overheads



pathneck (Hu et al., SSGCOMM 04)

An active probing technique to locate choke points and bottleneck
along an Internet path

Recursive Packet Trains (RPT) consisting of load packets and TTL-
limited measurement packets

Locates choke points by measuring gap values in the returning
ICMP messages from each hop

load packets .
head measurement packets A tail measurement packets
- A { \f A N



pathneck

Use application packets as load packets in the

RPT
load packets
head measurement packets A tail measurement packets
4 \



Implementing pathneck
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Testbed Evaluation

Are the measurements done with pathneck implemented on
FlowTrace close to the measurements done with pathneck?

How does cross-traffic affect the measurements done with both
pathneck and FlowTrace?

How high are the latency overheads introduced by FlowTrace in the
application layer flow?



Testbed Evaluation

Emulab testbed
Linear topology
Varying bottleneck location and size
Background flow, hop-by-hop varying cross-traffic flows
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Testbed Evaluation

Two choke points scenario
Choke points at Hop2 and Hop3

With and without cross traffic
Measure with both pathneck and FlowTrace
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Testbed Evaluation
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Testbed Evaluation
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Testbed Evaluation

Three choke points scenario

Choke points at Hop3, Hop6, and Hop8
With and without cross traffic

Measure with both pathneck and FlowTrace
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Testbed Evaluation
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Testbed Evaluation
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Testbed Evaluation

Latency overhead:s introduced by FlowTrace

Measure the additional latency experienced by each application
packet due to buffering by FlowTrace

Study the effect of the per-packet wait timers (t,,,) on the latency
overheads



Testbed Evaluation
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Conclusion

We presented FlowTrace—an in-band framework to implement
active network measurement algorithms using basic Linux utilities

We implemented pathneck in FlowTrace and analyzed the
measurements conducted by both pathneck and FlowTrace

The latency overheads introduced by FlowTrace are relatively
insignificant, and increase with the value of inter-packet arrival
threshold, t;

1 tipa-



Future Work

Implement other active measurement algorithms such as pathload,
pathchirp, on FlowTrace

Conduct Internet-wide experiments to measure network
characteristics such as available bandwidth and bottleneck location

Study the impact of FlowTrace on the performance of different
protocols and applications such as web browsing, video streaming.



Questions?

Email: adnan-ahmed@uiowa.edu
Website: http://cs.uiowa.edu/~aahmed1/
Twitter: @ adnan _ahmed_



