FlowTrace: A Framework for Active
Bandwidth Measurements
using In-band Packet Trains

Adnan Ahmed (University of lowa)
Ricky K. P. Mok (CAIDA, UCSD)
Zubair Shafiq (University of lowa)

Email: adnan-ahmed@uiowa.edu
Website: http://cs.uiowa.edu/~aahmedl/

Outline

Background and

Motivation FlowTrace

Design framework

Measurement tools pathneck implementation

Prior art and limitations

Evaluation i
aluatio Conclusion and

Emulab testbed Future work

Background

What is the
available
bandwidth?

What is
the RTT?

Where is the
bottleneck link?

Background

Background

Passive measurements

Active measurements

Passive measurements

Monitor ongoing traffic and local state to infer available bandwidth
Video playback buffer
Packet arrival rate

Background

Passive measurements

Drawbacks
Cannot detect when available bandwidth increases

Background

Active measurements

Inject measurement probes into the network and measure network
response to estimate available bandwidth (and choke points)

iPerf
pathload

pathneck

b
... and many mor@

Background

Active measurements

Drawbacks
Measurement traffic competes with the application traffic

Incurs additional congestion overhead on to the network

Background

Prior Research

Active bandwidth measurement techniques transfer significant
dummy measurement payloads over the network

Leverage useful application data to construct measurement traffic
MGRP (S/GCOMM '09), minProbe (IMC '14)

Prior solutions require Kernel changes or specialized hardware

Prior Research

O

[==|
B apps probers
| 6| -

SENDER RECEIVER

MNetwork

[k

probers

Send probes Reconstitute
@ D O using the probes and @ @

Contribute g ment Probe AP deliverto prober Demultiplex Reassemble
TGP d payload from probes packets
packets and piggyback = and pass to TCP
TGP payload on probes IP IP P [P IP
. [mMarP| [vGRP
Probe | | Probe
Send @ @ Receive
MGRP packets MGRP packets
(iii) (ii) (i
The final fragment of Packet train that is Packet train with
the last piggybacked fully piggybacked 2 empty pmobes and
— o — TCPﬁcket one pamally reused
|] | L] I L] | L]] | L]

*source: http://www.cs.umd.edu/~pavlos/papers/sigcomm-mgrp-slides.pdf

Prior Research

http://www.cs.umd.edu/~pavlos/papers/sigcomm-mgrp-slides.pdf

Prior Research

Use appliccn‘I algorithm [0 mboxctrl |/ct measurements

A
hd

MinProbe (Wang e| mbox daemon
Middlebok architect

) 4

Precise modul ™ g5 extr
accessing|ldle sy

setRgtvorks
I GFPEEKet timings by

ayer

. flow table

Modulated

Incoming Traffic Probe Traffic

Requires specidlizédf-~----=====----~ NtE

v

MinProbe Middlebox

*courtesy: https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/22-network-measurements-avail-

bandwidth.pptx

https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/22-network-measurements-avail-bandwidth.pptx

Outline

Background and

Motivation FlowTrace

Design framework

Measurement tools pathneck implementation

Prior art and limitations

Evaluation i
aluatio Conclusion and

Emulab testbed Future work

FlowTrace

Implement measurement algorithms in userspace

Modify the userspace FlowTrace program to implement the
desired measurement algorithms

Does not require any specialized hardware or Kernel changes

Design FlowTrace by using basic Linux utilities easing
deployment in the wild

Design framework

Allow in-band implementation of active measurement algorithms to
decrease the associated overheads

|dentify flows and intercept flow packets
Collect packets in userspace
Wait for the desired number of packets to arrive

Construct and transmit the in-band measurement traffic at the
desired rate

o Deign

Challenges

Lack of Kernel-level visibility and packet control in userspace
Control transmission rates of the packets

Minimize the impact of FlowTrace on application performance

Challenges

iptables
Configures firewall to allow or block application traffic

libnetfilter queue and NFQUEUE
NFQUEUE is an iptables target
Delegates verdicts on intercepted packets to userspace
Userspace programs issue verdicts via libnetfilter_queue API

Challenges

libnetfilter queue and NFQUEUE (contd.)
Packets are delegated from the head of the queue
Packets are popped from the queue upon verdict

Packet buffering
Buffer packets in userspace and drop from the queue

Challenges

Challenges

Lack of Kernel-level visibility and packet control in user-space
Intercept packets using iptables and libnetfilter_queue

Control transmission rates of the packets
Buffer packets in memory and respawn at the desired rate

Minimize the impact of FlowTrace on application performance

Per-packet wait timers (t,,,) to avoid latency overheads

pathneck (Hu et al., SSGCOMM 04)

An active probing technique to locate choke points and bottleneck
along an Internet path

Recursive Packet Trains (RPT) consisting of load packets and TTL-
limited measurement packets

Locates choke points by measuring gap values in the returning
ICMP messages from each hop

load packets .
head measurement packets A tail measurement packets
- A { \f A N

pathneck

Use application packets as load packets in the

RPT
load packets
head measurement packets A tail measurement packets
4 \

Implementing pathneck

Application

2. Respawn packets (3. Construct RPT

Repeart till n packeis —
1. Identify flow P packel®. . Add TTL-limited

ipa

2b. Copy into an

Configure Ethemnet packet

firewall

2a. Delegate

1 . o user-space ¢ packet Send packels H
1 . i without probes |
1 . iprables rufe \ NE DROP i
| s <hquples - NFQ E—— H
[. ; :

L . 4. Send to wire
: M V libnetfilter i '
| : n Outbound traffic
: D D - D]] ﬁ L Receive ICMP responses

k - *" MFCueue /
uirewall)IIIIIIIIIIIIII Illlllll}

>N
FlowTrace

Outline

Background and

Motivation FlowTrace

Design framework

Measurement tools pathneck implementation

Prior art and limitations

Evaluation i
aluatio Conclusion and

Emulab testbed Future work

Testbed Evaluation

Are the measurements done with pathneck implemented on
FlowTrace close to the measurements done with pathneck?

How does cross-traffic affect the measurements done with both
pathneck and FlowTrace?

How high are the latency overheads introduced by FlowTrace in the
application layer flow?

Testbed Evaluation

Emulab testbed
Linear topology
Varying bottleneck location and size
Background flow, hop-by-hop varying cross-traffic flows

Background flow T

= =< =< =< =< (== =<
\%\— J PR P P J PR
o Hop1 Hop2 Hop3 Hop4 Hop5 Hopé Hop7 Hopé

@

v o Y : v o v o v o v o y v o v
hop by hop cross-traffic flows

Testbed Evaluation

Two choke points scenario
Choke points at Hop2 and Hop3

With and without cross traffic
Measure with both pathneck and FlowTrace

-

80 Mbps 30 Mbps 10 Mbps 100 Mbps 70 Mbps 50 Mbps 60 Mbps 50 Mbps 40 Mbps
= == == ==) == === ==
l— —_— t— e . J . J —-— J
H0p5 4 ms HOPG 40 ms H0p7 10 ms Hopa 0.01 ms

0.1ms Hop1 0.4ms Hop2 0.4 ms Hop3 14 ms Hop4 2ms
N P P P N P N >4

&
¥y oo v o v v o v oo Y v
hop by hop cross-traffic flows

Testbed Evaluation

Without cross traffic 12.5] >

Bbthepattsiecknaasured gap 'Cg 10.0
Vaduel acenaleattpdbaaw = 75
goamsidpasimpsekthediops 5 -
= 5.0]

s —— pathneck
2.5]

-4-- FlowTrace

1 2 3 45 6 7 8 9
Hop ID

Ealushon

Testbed Evaluation

With cross traffic 1>
Both pathneck and ’Cg >
FlowTrace algwhifyademar £ 104
in gap values along the e
pa’?h P J 2 > —— pathneck
—4-- FlowTrace
0

1 2 3 45 6 7 8 9
Hop ID

Testbed Evaluation

Three choke points scenario

Choke points at Hop3, Hop6, and Hop8
With and without cross traffic

Measure with both pathneck and FlowTrace

2

100 Mbps 200 Mbps 80 Mbps 200 Mbps 160 Mbps 60 Mbps 100 Mbps 40 Mbps 160 Mbps
== == == == == == == jo=a
L . J J Lo |- . J J)
Hop5 4 ms Hop6 40 ms Hop7 10 ms Hop8 0.01 m

> 0.1 ms Hop1 0.4ms Hop2 0.4 ms Hop3 14 ms Hop4 2ms >

‘l 1 '] ‘| ! ‘l ! 0 1 ! ' ‘\
v ' ¥ 1 ." v ! v ! v I ¥ 1 w'(v

hop by hop cross-traffic flows

Testbed Evaluation

Without cross traffic 6

D
Bothepattsiecknaasured gap »
Fiduels aeenaieatipd-bapydimw £ 4
bapGmbins bigpSstheobps S
points '-GEJ 5
3 —— pathneck
-4-- FlowTrace
0

1 2 3 4 5 6 7 8 9
Hop ID

Testbed Evaluation

AN
With cross traffic 8 “T— pathneck
Bbthepattsneckneasured gap v gl -4-- FlowTrace
fhuesdmctertifcidapdgly £
ldogreb panat $HhyeBhaspshoke G 4
points K
=

1 2 3 4 5 6 7 8 9
Hop ID

Testbed Evaluation

Latency overhead:s introduced by FlowTrace

Measure the additional latency experienced by each application
packet due to buffering by FlowTrace

Study the effect of the per-packet wait timers (t,,,) on the latency
overheads

Testbed Evaluation

Latency overheads a1s —
Fpgjpleomesydfisatots o o
datmi t tepmtediyolie akEbeyed 1.0
ﬁmthchfngdqshp@&ehgwtﬂm 5 |
Ritérexpevenhaadsleast 3 i _
additional latency due to 50'5\\\ \ \ P\
buffering § NN K\N
8 %% 10 20 30 40 50 60 70

Packet IDs

Outline

Background and

Motivation FlowTrace

Design framework

Measurement tools pathneck implementation

Prior art and limitations

Evaluation i
aluatio Conclusion and

Emulab testbed Future work

Conclusion

We presented FlowTrace—an in-band framework to implement
active network measurement algorithms using basic Linux utilities

We implemented pathneck in FlowTrace and analyzed the
measurements conducted by both pathneck and FlowTrace

The latency overheads introduced by FlowTrace are relatively
insignificant, and increase with the value of inter-packet arrival
threshold, t;

1 tipa-

Future Work

Implement other active measurement algorithms such as pathload,
pathchirp, on FlowTrace

Conduct Internet-wide experiments to measure network
characteristics such as available bandwidth and bottleneck location

Study the impact of FlowTrace on the performance of different
protocols and applications such as web browsing, video streaming.

Questions?

Email: adnan-ahmed@uiowa.edu
Website: http://cs.uiowa.edu/~aahmed1/
Twitter: @ adnan _ahmed_

