
FlowTrace: A Framework for Active
Bandwidth Measurements

using In-band Packet Trains
Adnan Ahmed (University of Iowa)

Ricky K. P. Mok (CAIDA, UCSD)

Zubair Shafiq (University of Iowa)

Email: adnan-ahmed@uiowa.edu

Website: http://cs.uiowa.edu/~aahmed1/

Outline

Background and
Motivation

Measurement tools
Prior art and limitations

FlowTrace

Design framework
pathneck implementation

Evaluation

Emulab testbed

Conclusion and
Future work

Background
What is the

available
bandwidth?

What is
the RTT?

Where is the
bottleneck link?

1 Background

Background

Passive measurements

Active measurements

2 Background

Passive measurements

Monitor ongoing traffic and local state to infer available bandwidth

Video playback buffer

Packet arrival rate

3 Background

Passive measurements

Drawbacks

Cannot detect when available bandwidth increases

3 Background

Active measurements

Inject measurement probes into the network and measure network
response to estimate available bandwidth (and choke points)

iPerf

pathload

pathneck

… and many more

4 Background

Active measurements

Drawbacks

Measurement traffic competes with the application traffic

Incurs additional congestion overhead on to the network

4 Background

Prior Research

Active bandwidth measurement techniques transfer significant
dummy measurement payloads over the network

Leverage useful application data to construct measurement traffic

MGRP (SIGCOMM ‘09), minProbe (IMC ’14)

Prior solutions require Kernel changes or specialized hardware

5 Prior Research

Prior Research

Use application traffic to conduct measurements

MGRP (Papageorge et al., SIGCOMM ‘09)

Piggyback application data inside “vessel” probe packets

Receiver demultiplexes application data and conducts
measurements

Changes to the Linux Kernel, making it difficult to deploy

6 Prior Research

*source: http://www.cs.umd.edu/~pavlos/papers/sigcomm-mgrp-slides.pdf

http://www.cs.umd.edu/~pavlos/papers/sigcomm-mgrp-slides.pdf

Prior Research

Use application traffic to conduct measurements

MinProbe (Wang et al., IMC ’14)

Middlebox architecture for high-speed networks

Precise modulation and measurement of packet timings by
accessing Idle symbols (/I/) in PHY layer

Requires specialized hardware such as SoNIC

7 Prior Research

*courtesy: https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/22-network-measurements-avail-

bandwidth.pptx

https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/22-network-measurements-avail-bandwidth.pptx

Outline

Background and
Motivation

Measurement tools
Prior art and limitations

FlowTrace

Design framework
pathneck implementation

Evaluation

Emulab testbed

Conclusion and
Future work

FlowTrace

Implement measurement algorithms in userspace

Modify the userspace FlowTrace program to implement the
desired measurement algorithms

Does not require any specialized hardware or Kernel changes

Design FlowTrace by using basic Linux utilities easing
deployment in the wild

8 FlowTrace

Design framework

Allow in-band implementation of active measurement algorithms to
decrease the associated overheads

Identify flows and intercept flow packets

Collect packets in userspace

Wait for the desired number of packets to arrive

Construct and transmit the in-band measurement traffic at the
desired rate

9 Design

Challenges

Lack of Kernel-level visibility and packet control in userspace

Control transmission rates of the packets

Minimize the impact of FlowTrace on application performance

10 Challenges

Challenges

iptables

Configures firewall to allow or block application traffic

libnetfilter_queue and NFQUEUE

NFQUEUE is an iptables target

Delegates verdicts on intercepted packets to userspace

Userspace programs issue verdicts via libnetfilter_queue API

11 Challenges

Challenges

libnetfilter_queue and NFQUEUE (contd.)

Packets are delegated from the head of the queue

Packets are popped from the queue upon verdict

Packet buffering

Buffer packets in userspace and drop from the queue

12 Challenges

Challenges

Lack of Kernel-level visibility and packet control in user-space

Intercept packets using iptables and libnetfilter_queue

Control transmission rates of the packets

Buffer packets in memory and respawn at the desired rate

Minimize the impact of FlowTrace on application performance

Per-packet wait timers (tipa) to avoid latency overheads

13 Challenges

pathneck (Hu et al., SIGCOMM ‘04)

An active probing technique to locate choke points and bottleneck
along an Internet path

Recursive Packet Trains (RPT) consisting of load packets and TTL-
limited measurement packets

Locates choke points by measuring gap values in the returning
ICMP messages from each hop

2 3 m1 2 3 m1 3 2 1m

head measurement packets tail measurement packets
load packets

14 pathneck

pathneck

Use application packets as load packets in the
RPT

2 3 m1 2 3 m1 3 2 1m

head measurement packets tail measurement packets
load packets

15 pathneck

Implementing pathneck

16 FlowTrace

Outline

Background and
Motivation

Measurement tools
Prior art and limitations

FlowTrace

Design framework
pathneck implementation

Evaluation

Emulab testbed

Conclusion and
Future work

Testbed Evaluation

Are the measurements done with pathneck implemented on
FlowTrace close to the measurements done with pathneck?

How does cross-traffic affect the measurements done with both
pathneck and FlowTrace?

How high are the latency overheads introduced by FlowTrace in the
application layer flow?

17 Evaluation

Emulab testbed

Linear topology

Varying bottleneck location and size

Background flow, hop-by-hop varying cross-traffic flows

Measure gap values with both pathneck and FlowTrace

Testbed Evaluation

18 Evaluation

Testbed Evaluation

Two choke points scenario

Choke points at Hop2 and Hop3

With and without cross traffic

Measure with both pathneck and FlowTrace

19 Evaluation

Testbed Evaluation

Without cross traffic

Both pathneck and

FlowTrace measure similar

gap values across the hops

Both pathneck and

FlowTrace identify Hop2

and Hop3 as choke points

The errors in measured gap

values remain relatively low

across the hops

20 Evaluation

Testbed Evaluation

With cross traffic

Both pathneck and

FlowTrace measure similar

gap values across the hops

Both pathneck and

FlowTrace identify Hop2

and Hop3 as choke points

Both pathneck and

FlowTrace experience

increasingly large variance

in gap values along the

path

21 Evaluation

Testbed Evaluation

Three choke points scenario

Choke points at Hop3, Hop6, and Hop8

With and without cross traffic

Measure with both pathneck and FlowTrace

22 Evaluation

Testbed Evaluation

Without cross traffic

Both pathneck and

FlowTrace measure similar

gap values across the hops

Both pathneck and

FlowTrace identify Hop3,

Hop6, and Hop8 as choke

points

The errors in measured gap

values remain relatively low

across the hops

23 Evaluation

Testbed Evaluation

With cross traffic

Both pathneck and

FlowTrace identify Hop3,

Hop6, and Hop8 as choke

points

The errors in measured gap

values become increasingly

large across the hops

24 Evaluation

Testbed Evaluation

Latency overheads introduced by FlowTrace

Measure the additional latency experienced by each application
packet due to buffering by FlowTrace

Study the effect of the per-packet wait timers (tipa) on the latency
overheads

25 Evaluation

Testbed Evaluation

The latency overhead

exhibit a periodic behavior

with the last packet in the

RPT experiencing least

additional latency due to

buffering

As tipa increases, packets

can potentially be buffered

for longer, increasing the

latency overheads

Latency overheads

26 Evaluation

Approximately 0.75ms to

1 ms overhead in latency

Outline

Background and
Motivation

Measurement tools
Prior art and limitations

FlowTrace

Design framework
pathneck implementation

Evaluation

Emulab testbed

Conclusion and
Future work

Conclusion

We presented FlowTrace—an in-band framework to implement
active network measurement algorithms using basic Linux utilities

We implemented pathneck in FlowTrace and analyzed the
measurements conducted by both pathneck and FlowTrace

The latency overheads introduced by FlowTrace are relatively
insignificant, and increase with the value of inter-packet arrival
threshold, tipa.

27 Conclusion

Future Work

Implement other active measurement algorithms such as pathload,
pathchirp, on FlowTrace

Conduct Internet-wide experiments to measure network
characteristics such as available bandwidth and bottleneck location

Study the impact of FlowTrace on the performance of different
protocols and applications such as web browsing, video streaming.

27 Future Work

Questions?
Email: adnan-ahmed@uiowa.edu

Website: http://cs.uiowa.edu/~aahmed1/

Twitter: @_adnan_ahmed_

