vrfinder: Finding Outbound Addresses in Traceroute

Alex Marder, Matthew Luckie, Bradley Huffaker, kc claffy
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Overview

- What are outbound addresses?
 - Layer 3 Virtual Private Networks (L3VPNs)
 - Impact on topology inference

- Methodology:
 - Finding outbound addresses
 - Challenges – forwarding loops, /31 and /127 subnets

- Results
 - Evaluation against ground truth
 - Modified bdrmapIT
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Traceroute Response Types
Traceroute Response Types: Inbound
Traceroute Response Types: Off-Path
Traceroute Response Types: Off-Path
Layer 3 Virtual Private Network
L3VPN: Default Forwarding
L3VPN: Default Forwarding
L3VPN: Virtual Forwarding

Service Provider (SP)
L3VPN: Virtual Forwarding
Impact on Traceroute Analysis

162.252.70.138
IP2AS: Internet2

72.14.209.107
IP2AS: Google

72.14.209.106
IP2AS: Google

Real Topology

Internet2

Google

i_1
R_1

R_2
i_2

R_3
i_3
Impact on Traceroute Analysis

Incorrect Inferred Topology
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Inferring Outbound Addresses
Inferring Outbound Addresses

![Diagram of network flows with IP addresses labeled]
Inferring Outbound Addresses

Path A: inbound addresses

192.0.2.2
192.0.2.9
192.0.2.10
192.0.2.2.14
Inferring Outbound Addresses

Path A: inbound addresses
- 192.0.2.2
- 192.0.2.5
- 192.0.2.9
- 192.0.2.13
- 192.0.2.21
- 192.0.2.25

Path B: off-path address
- 192.0.2.2
- 192.0.2.10
- 192.0.2.14
- 192.0.2.17
- 192.0.2.21
Inferring Outbound Addresses

Path A: inbound addresses
192.0.2.2 192.0.2.9 192.0.2.21 192.0.2.25
Path B: off-path address
192.0.2.2 192.0.2.10 192.0.2.12/30 192.0.2.21
Path C: outbound address
192.0.2.2 192.0.2.14 192.0.2.21
Challenges

• Inefficient routing at IXPs

• Unresponsive routers

• Forwarding loops

• Two address subnets - /31 and /127
Challenges

• Inefficient routing at IXPs

• Unresponsive routers

• Forwarding loops

• Two address subnets - /31 and /127
Challenges

• Inefficient routing at IXPs

• Unresponsive routers

• Forwarding loops

• Two address subnets - /31 and /127
Challenges

• Inefficient routing at IXPs

• Unresponsive routers

• Forwarding loops

• Two address subnets - /31 and /127
Challenges: Loops

Path D: forwarding loop, repeated address
Challenges: Loops

Path D: forwarding loop, repeated address

Path E: forwarding loop, no repeated address
Challenges: Loops

Path E: forwarding loop, no repeated address

Traceroute Test: target i_6
Challenges

• Inefficient routing at IXPs

• Unresponsive routers

• Forwarding loops

• Two address subnets - /31 and /127
Challenge: /31 and /127 Subnets

Path F: /31 look like outbound
Challenge: /31 and /127 Subnets

Path F: /31 look like outbound

192.0.2.4 192.0.2.5 192.0.2.6 192.0.2.7
Overview

• What are outbound addresses?
 • Layer 3 Virtual Private Networks (L3VPNs)
 • Impact on topology inference

• Methodology:
 • Finding outbound addresses
 • Challenges – forwarding loops, /31 and /127 subnets

• Results
 • Evaluation against ground truth
 • Modified bdrmapIT
Experiments

• IPv4 and IPv6 traceroutes from January 2020

• Inferred outbound addresses
 • 5.8% in IPv4
 • 1.7% in IPv6
Validation Against Internet2 and REANNZ

Internet2
- Default forwarding connects members
- L3VPN connects members to commercial peers

REANNZ
- Default forwarding supports MPLS
- All members connected via L3VPN

<table>
<thead>
<tr>
<th></th>
<th>Internet2</th>
<th>REANNZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPV</td>
<td>TPR</td>
</tr>
<tr>
<td>IPv4</td>
<td>100.0%</td>
<td>95.3%</td>
</tr>
<tr>
<td>IPv6</td>
<td>100.0%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>
Validation Against Internet2 and REANNZ

Internet2
- Default forwarding connects members
- L3VPN connects members to commercial peers

REANNZ
- Default forwarding supports MPLS
- All members connected via L3VPN

<table>
<thead>
<tr>
<th></th>
<th>Internet2</th>
<th>REANNZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPV</td>
<td>TPR</td>
</tr>
<tr>
<td>IPv4</td>
<td>100.0%</td>
<td>95.3%</td>
</tr>
<tr>
<td>IPv6</td>
<td>100.0%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>
Validation Against Internet2 and REANNZ

Internet2
- Default forwarding connects members
- L3VPN connects members to commercial peers

REANNZ
- Default forwarding supports MPLS
- All members connected via L3VPN

<table>
<thead>
<tr>
<th></th>
<th>Internet2</th>
<th>REANNZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPV</td>
<td>TPR</td>
</tr>
<tr>
<td>IPv4</td>
<td>100.0%</td>
<td>95.3%</td>
</tr>
<tr>
<td>IPv6</td>
<td>100.0%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>
Improvements for AS Operator Accuracy

IPv4

- Internet2 VPN: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- REANNZ VPN: 80% bdrmapIT, 85% bdrmapIT + vrfinder
- Internet2 DFN: 95% bdrmapIT, 100% bdrmapIT + vrfinder
- Internet2 Neighbor: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- REANNZ Neighbor: 80% bdrmapIT, 85% bdrmapIT + vrfinder
- PeeringDB: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- Regex: 80% bdrmapIT, 85% bdrmapIT + vrfinder

IPv6

- Internet2 VPN: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- REANNZ VPN: 80% bdrmapIT, 85% bdrmapIT + vrfinder
- Internet2 DFN: 95% bdrmapIT, 100% bdrmapIT + vrfinder
- Internet2 Neighbor: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- REANNZ Neighbor: 80% bdrmapIT, 85% bdrmapIT + vrfinder
- PeeringDB: 90% bdrmapIT, 95% bdrmapIT + vrfinder
- Regex: 80% bdrmapIT, 85% bdrmapIT + vrfinder
Improvements for AS Operator Accuracy

IPv4

IPv6
Improvements for AS Operator Accuracy

IPv4

IPv6
Conclusion

• Outbound addresses complicate traceroute interpretation

• vrfinder infers outbound addresses in traceroute

• High PPV and TPR

• Vrfinder improves AS operator inferences