Erin Kenneally
CEO, Elchemy
UC San Diego
erin@elchemy.org

Scott Coull Redjack

C) 2014 ELCHEMY; REDJACK

What's the Problem?

Technologists optimize for EFFICIENCY

Lawyers optimize for CERTAINTY

Collective Data Sharing needs to optimize for TRUST

Data Sharing Truisms

Data (un)Sharing Symptoms

- ☐ Uncertainty of legal risk
- ☐ Understated value of potential benefits
- ☐ One-size-fits-all approach to disclosure controls
- ☐ Implicit assumption that any sharing increases risk
- □ Results in:
 - ☐ Data rich vs. data poor
 - ☐ Sharing through ad-hoc, interpersonal relationships
 - □ Self-perpetuating scarcity : scalable, transparent, sustainable sharing

ノンナナーニバガル

Network Data Sharing Causes

- □ Difficulty bounding attack risk
 - ☐ New inference attacks being developed
 - ☐ Can't quantify access to 2ndry data sources
 - ☐ Privacy applications immature for network data
- □ Data Complexity
 - ☐ Huge data volumes and heterogeneity
 - □ +++ protocols and new ones being developed
 - □ Many stakeholders to consider
- ☐ Interactions between policy and technology
 - ☐ Different levels of risk tolerance, control IQ & needs
 - ☐ Exponential number of unique scenarios to cover

(C) 2014 ELCHEMY; REDJACK

How to Optimize for Trust: Less is More

- The Data Sharing Weight Loss Plan (psychic)
- □ Technologists (less inefficiency)
 - < operational overhead (reuse established infrastructure)

 - □ > ROI : data utility
- □ Lawyers (less uncertainty)
 - - □ transparency WHO, WHAT, WHY
 - □ < reputation risk
 - □ standardized auditing/accountability

、これをデバル

ELCHEMY; REDJACK (C) 2014

Disclosure Control Framework- 3 Components

- **Profiles (Risk & Utility)**
 - associated with a dataset, methodology for considering in concert;
 - DP can create concise, standardized audit trail of the decision-making process underlying the data disclosure
- **Templates (library, reusable)**
 - Policy: represent common legal and policy documents with placeholders for scenario-specific answers
 - Data: description of released data & method of parsing
 - **Technical:** methods for applying specific technical disclosure controls
- **Environments (library, reusable)**
 - トトナーニ・ハブトヤ sets of Templates chosen and configured by the DP during the risk assessment and data sharing process
 - includes utility/risk profiles that explicitly state publisher assumptions

Templates e.g.

Document Template

```
"name": "Privacy Notice",
"description": "A privacy notice and terms of use.",
"categories": ["upstream", "terms", "covenants"],
"text": "We collect [#(COLLECTED_DATA)] kinds of
     information to measure the performance of
     your mobile broadband service.
     [COLLECTED_DATA]
     This data is protected using
     [PROTECTIONS]. You can find more detail in
     the FCC's technical summary of this program.",
"questions": [
     {"question": "Enumerate data items collected.",
      "answer": "COLLECTED_DATA"},
     { "question": "Enumerate protections for raw
            data after collection.",
      "answer": "PROTECTIONS"}
```

Technology\$Template

Data\$Template

```
"name": "GPS Data",

"description": "Lat. and long. data",

"categories": ["location_data"],

"parser": "http://example.com/gps"

"schema": "

{

        "accuracy": "float",
        "latitude": "float",
        "longitude": "float",
        "timestamp": "datetime"

}"
```

e.g., Profiles

Use Case	Description	Audience	Duration	Timeliness	Detail	Functionality	Output
Signal Strength in Geographic Block	Coverage map of average signal strength by carrier and bearer channel during off- and onpeak timeframes.	Public	Indefinite	Released upon completion (~1 year).	Statistical time- series information for carriers and channel.	Indefinite	Broad geographic map for awareness and education.

Use Case	Type of Data	Part	icipants	Risk Factors
Ose case		Publisher	Recipient	HISK T decors
Signal Strength in Geographic Block	Non-identifying signal strength, cell phone carrier	FCC and contractor(s): Federal agency with the following considerations • Legal/regulatory • Contractual • Ethical	General Public: Variety of entities. On average, low knowledge, skills and abilities. Low motivation and intent for harm or abuse.	SESPENDADES HENDEN BESKESESPENDES HENDES HENDEL

DCF-Phases & Components

Not a Magic Pill (dern it!)

- □ Does not provide yes/no answers
 - □ Data sharing is a risk management process
 - ☐ Appetite for risk varies significantly
- ☐ Attacks may exist or information may be leaked
 - ☐ Understand what risks exist
 - ☐ Justify disclosure control choices

Disclosure Control -> Optimizing Trust

- ☐ Framework can be a change agent for current data sharing
 - ☐ (articulate risk & benefit, vanilla response, skewed risk-benefit calculation)
- ☐ Enables data providers to trust recipients and be trusted by oversight entities
- Provides a unified methodology to enhance certainty and efficiency
- ☐ Tacitly state justifications and assumptions for choices
- ☐ Facilitates interaction between technology and policy
- ☐ Generalizable across all network data & scenarios
- □ Re-conceptualizes risk

How Does Disclosure Control Optimize for Trust?

Status

- **Paper Publication:**
 - IEEE Homeland Security Technology Conf (www.ssrn.com/abstract=2032315)
 - **Technology Policy Research Conference**
- **FCC Case Study:**
 - **Help advise Mobile Broadband Measurement project**
 - Privacy analysis of collected data and policy controls
- **Standardization**
 - Used utility/risk assessment methodology to choose disclosure control options アンナナモバルト
 - Developed initial drafts of profile, template, environment structures