

PhantomNet An end-to-end mobile network testbed

Kobus Van der Merwe

Why another mobile network testbed?

- Mobile networking growing traffic-wise and growing in importance
 - Mobile devices increasing in sophistication and becoming the "compute platform of choice"
- Current network architectures (LTE/EPC) are packet based
 - But under the hood look a lot like their circuit switched forebears
- Major technology trends reshaping the way we do things
 - Cloud computing, software defined networking
- Current measurement studies
 - From the "outside", no ground truth

Need a realistic "playground" where as a community we can:

- explore/invent mobile network architectures in an end-to-end manner
- look "under the hood" of existing mobile network architectures

PhantomNet

Programmable end-to-end mobile testbed to enable research at the intersection of mobile networking, cloud computing and software defined networking

- Remotely accessible and sharable
 - Emulab style

Base functionality

Mobile

Device

- Physical deployment
 - Mobile devices
 - Small cell deployment (LTE based)
 - SDN capable backbone
 - Cloud infrastructure
- Software
 - "Mobile network toolkit":
 - Modular evolved packet core (EPC) software
 - Emulab control framework

Mobile network toolkit

- Create "standard" mobile network architectures:
 - E.g., 4G: LTE + EPC
- Replace some/all components to realize different architectures:
 - Cloudlet-like architecture
 - Mobility First approaches
 - Softcell

Mobile device platform

- Exploit dual active radio devices
- One radio: commercial provider
 - Allow volunteers to use as regular handsets
 - Provide out-ofband control channel
 - Hoping we can use SciWiNet
- Second radio: PhantomNet
 - Part of testbed resources

Mobile device platform

- Dual radio devices
- "Tiered"
 abstractions for
 experimenter
 access:
 - JVM: Android applications
 - Basic command shell
- Planning to explore Seattle framework

Practicalities/challenges

- Spectrum!
 - No magic... experimental licenses
- Small cell
 - Increased availability
 - Key question is degree of programmability
- Mobile devices
 - Readily available
- Challenge: all the parts have to align!
 - Spectrum where can get small cells and mobile devices
- Software
 - Emulab control framework
 - OpenEPC for EPC

Status

- Integrated OpenEPC with Emulab
 - Uses emulation for RAN (UE and eNodeB)
 - Specifies LTE/EPC topology using NS file with PhantomNet enhancements
 - Brings up experiment with correct e2e configurations
 - External availability by end of April
- Hardware RAN interworking with EPC
 - End-to-end lab setup:
 - UE (Huawei modem), eNodeB (ipaccess small cell)
 - band 4
 - Functioning with OpenEPC in Emulab environment

Next steps

- Focus on hardware RAN
 - (small cell) eNodeB with more programmability
 - different spectrum options
- Handsets
 - dual radio
 - Seattle / SciWiNet
- Toolkit
 - exploring different abstraction
- Deployment and build out...

If you have thoughts about how PhantomNet could better serve your research needs please let us know!