IP Infrastructure Geolocation

Guan-Yan Cai, **Michael McCarrin**, Robert Beverly Naval Postgraduate School

CAIDA AIMS-5 April 1, 2015

Introduction

- IP Geolocation:
 - Given IP address, determine physical location
- IP Geolocation (commercially) used for:
 - Targeted advertising, recommendation systems
 - Reputation, security
- Hence, majority of existing work focuses on edge devices
- Less attention on infrastructure. e.g.,:
 - Routers
 - Servers
- Motivation:
 - Understand physical Internet topology better

Prior Work

- Prior work on router geolocation:
 - DNS (undns, DRoP)
 - Latency (Yoshida)
 - Topology (Feldman)
- State-of-the-art technique: *DNS-based Router Positioning* (*DRoP*) by Huffaker et al.
 - Relies on geolocation clues within DNS PTR record of router's IP
 Use geolocation hints to generate rule sets
- Our focus:
 - Does not work for routers with no DNS PTRs (40.4% or 12.8M)

Intuition

- Our simple intuition:
 - Routers are frequently co-located with other routers
 - E.g., carrier neutral colo, hosting facility, etc
- Hence, if we can determine that a router with known location is co-located or near to a router with unknown location:
 - Provides a means to estimate (with a measurable upper bound)
 the location of unknown router IPs

- Leverage "Street-Level geolocation" technique (Wang et al. 2006):
 - Uses trace route to estimate latency between passive landmarks and target
 - This gets you more vantage points (via passive landmarks)
 - Accuracy is proportional to number of vantage points and nearest vantage point
- Apply Wang's technique to router interfaces:
 - Router interfaces (instead of web servers) as landmarks

- Geolocating* target, T, with landmarks, L_i:
 - Perform traceroutes to T and to L_i

- Geolocating target, T, with landmarks, L_i:
 - Perform trace routes to T and to L_i
 - Determine point at which traceroutes diverge (F)
 - Estimate landmark to target delay, D, for all <L_i, T>

- Geolocating target, T, with landmarks, L_i:
 - Perform trace routes to T and to L_i
 - Estimate delay (milliseconds), D, for all <L_i, T>
 - Find L_{min} that produces the least estimated delay for all $\langle L_i, T \rangle$ over all vantage points
 - Note, estimated delay is an upper bound (worst case)
 - Location of T = Location of L_{min}

Experiment

- Use DRoP results as ground truth
- From DRoP's ~6M interfaces and ~8K unique locations:
 - Find locations with two interfaces that respond to trace route without anonymous hops (about half)
 - Half of them as landmarks (~4K)
 - Half of them as targets (~4K)
- Applied our methodology to geolocate all 4K targets
- Calculated Error Distance (km) i.e., geolocated position versus DRoP's location (Haversine distance)

Target's geolocation

- Nearest landmark
- Location obtained from DRoP results

Target's ground truth location

 Location obtained from DRoP results

Results - Global Err. Dist.

Results – Err. Dist. from different Vantage Points

Results – Est. Delay from nearest landmark (multiple VPs)

Evaluating DRoP

- Given our findings, we sought to better understand DRoP data:
 - Examine location inconsistencies
 - Use CBG to determine if locations are feasible
 - Use CBG to determine self-consistency of IPs believed to be at a particular location

Errors in DRoP Locations

- How can there be errors in locations?
- E.g.
 - 251 | us | ca | san francisco | 36.3480163544573 | -106.644463571429
 - Where is that lat/long?

Example: There are over 1900 San Franciscos Name Latitude Longitude Count

- Columbia alone has more than 100
- Some entries represent different places with the same name
- Others represent the same place with slightly different coordinates.
- Others are the same place with different spellings / nicknames / translations
- These problems emerge prior to DNS PTR record analysis.

		_	
Name	Latitude	Longitude	Country
San Francisco	-20.71667	-64.7	Bolivia
San Francisco	-19.98922	-63.13761	Bolivia
San Francisco	-17.35	-61.15	Bolivia
San Francisco	-17.31667	-61.11667	Bolivia
San Francisco	-16.78333	-68.76667	Bolivia
San Francisco	-16.78333	-62.85	Bolivia
San Francisco	-16.66667	-65.18333	Bolivia
San Francisco	-15.26667	-65.51667	Bolivia
San Francisco	-15.2	-64.45	Bolivia
San Francisco	-15.08333	-65.16667	Bolivia
San Francisco	-14.18048	-62.80217	Bolivia
San Francisco	-13.91667	-63.7	Bolivia
San Francisco	-13.03333	-64.75	Bolivia
San Francisco	-11.83333	-66.81667	Bolivia
San Francisco	-11.59252	-69.08892	Bolivia
San Francisco	-11.20491	-69.06671	Bolivia
San Francisco	12.51667	-81.7	Columbia
San Francisco	10.92704	-72.81018	Columbia
San Francisco	8.72267	-75.5885	Columbia
San Francisco	8.71667	-74.63333	Columbia
San Francisco	8.69894	-75.43727	Columbia
San Francisco	8.45	-73.11667	Columbia
San Francisco	8.12039	-75.75981	Columbia
San Francisco	7.78811	-74.80846	Columbia
San Francisco	7.23535	-73.07099	Columbia
San Francisco	7.08333	-73.83333	Columbia
San Francisco	6.23333	-73.46667	Columbia
San Francisco	6.11667	-75.98333	Columbia
San Francisco	4.68333	-76.03333	Columbia

Excerpt from GeoNames allCountries.txt

Finding Errors in DRoP IP to Location Mappings

- For each location, pick one responsive router interface
- Obtain 4,638 distinct locations with responsive interfaces
- Obtain RTTs from 22 Ark monitors to 4,638 interfaces (~100K RTTs)
- Use CBG on RTTs to determine possible region of interface
- Results:
 - 46% of these 4,638 interfaces outside of feasible boundaries imposed by CBG
 - CDF of distances from CBG centroid to DRoP location shows relatively large error distances

Focus on a DRoP Location (I)

- How self-consistent are IPs within a DRoP location:
 - Use Ark vantage points to gather RTTs
 - Use CBG to find centroids of feasible regions
 - For a given location, examine the pairwise N(N-1) distances between centroids
- Examined 20 router IPs from Chicago, IL:
- Results:
 - CDF of pairwise distances shows two modes!
 - Two distinct locations!
 - 60% in Chicago, IL
 - 40% in ocean 12mi west of Santa Barbara

Focus on a DRoP Location (II)

- Two distinct locations:
 - 60% Chicago, IL
 - 40% 12 miles west of Santa Barbara
- What happened here?
- Examining a secondary IP geolocation database indicates that the 8 interfaces are in Chico, CA
- DNS PTR record contains non-standard geographic hint:
 - cr1.chi2ca.sbcglobal.net
 - "chi" == Chico
 - "chi" != Chicago
- Road Runner geo hint is consistent:
 - bu-ether25.chctilwc00w-bcr00.tbone.rr.com

DRoP ambiguities/errors are pervasive

IP	PTR	DRoP Location	True Location
137.164.42.242	dc-pom-csu-lax- dc2-10ge.cenic.net	Port Moresby, Papua New Guinea	Los Angeles
128.83.10.110	tnh-gi5-5- nocb10.gw.utexas.edu	Erdaojiang, Jilin, China	Austin, TX
146.6.137.125	ccp-test.its.utexas.edu	Concepcion, Chile	Austin, TX
115.111.183.237	inpudiidnsprprd01.tata communications.com	Cumberland, RI	Nadu, India

Future Work

- Currently in active collaboration with CAIDA
- We can do some obvious things to improve name-tocoordinate mapping.
 - Some problems have already been fixed.
- How do we scale up error detection?
 - Get more out of fewer trace routes by intelligently selecting landmarks.
 - Start with CBG to get course granular.
 - Use landmarks within feasible region.
- Use existing CAIDA traceroutes?
 - Trade up control for speed / convenience
 - Might be good enough...

Thank You

Questions?

