Adnan Ahmed University of Iowa

University of Iowa

Introduction

- Transit
 - Provides connectivity to the Internet
 - Traffic volume based fees
- Peering
 - Bilateral exchange
 - Settlement-free (no fee)

Related work

Interconnection strategies in peering ecosystem

- Agent-based analysis [Lodhi-Dhamdhere, SIGMETRICS '12]
- Open-peering [Lodhi et al., Infocom '14]
- Game-theoretic models [Accongiagioco et al., IFIP '14][Badasyan-Chakrabarti, Telecommunications Policy '08]
- Complexities in decision making [Lodhi et al., Infocom '15]
- Evolution of peering and topological Impact
 - Network model [Dhamdhere-Dovrolis, CoNEXT '10]
 - Remote peering [Castro et al., CoNEXT '14]
 - IXP study [Ager et al., SIGCOMM '12]
 - PeeringDB analysis [Lodhi et al., SIGCOMM CCR '14]

Our focus

• Large-scale measurement based performance comparison

Methodology

- Throughput measurements
 - Strain the network
- Delay measurements using ICMP packet probing
 - Rate limiting at ISPs
- Our approach
 - HTTP based end-to-end delay measurements

The big picture

The big picture

The big picture

Data collection

- A commercial CDN
- Collected across PoPs at 19 IXPs
- 1M measurements
 - ~350K clients
 - 360 Autonomous systems

7. Peering vs Transit

- Transmission ~ 0
 - small size of pixel tag

- Transmission ~ 0
 - small size of pixel tag
- RTT ~ Propagation delay + Queueing delay

RTT measurements over time

University of Iowa

8. RTT components

• Diurnal pattern

RTT measurements over time

University of Iowa

- Diurnal pattern
- Time series latency pings

- Diurnal pattern
- Time series latency pings

- Diurnal pattern
- Time series latency pings
- Propagation delay < RTT_{min}

- Diurnal pattern
- Time series latency pings
- Propagation delay < RTT_{min}

- Diurnal pattern
- Time series latency pings
- Propagation delay < RTT_{min}

- Diurnal pattern
- Time series latency pings
- Propagation delay < RTT_{min}
- Maximum queueing delay
 ~ RTT_{max} RTT_{min}

9. Propagation and Queueing delays

Path length comparison

Path length comparison

Path length comparison

Shorter path length via peering

University of Iowa

10. Path length comparison

Conclusion

- Peering generally outperforms transit for a majority of clients
- Peering almost always has better propagation delays
 - Shorter path lengths for peering
- Transit sometimes has better queueing delays
 - Under-provisioned peering paths