
Improving Speed Tests

Srikanth Sundaresan (Princeton), 
Amogh Dhamdhere and k claffy (CAIDA)

AIMS 2017



Speed tests have not changed in years

• They still just run TCP stream(s) between two 
hosts and report a number

• None of the popular tools try to do anything 
more

– No attempt at any type of diagnosis

• Where did congestion occur (if it occurred)?

• Was it the access link or the wireless link or something 
else?



Very little needs to change to be able 
to answer (some of) these questions

• Packet captures at servers can tell us about 
RTT

– Which in turn can tell us about the conditions that 
the flow encounters

• The TCP flow has already punched a hole in 
the NAT

– Which ought to let us probe the path all the way 
to the end host



Very little needs to change to be able 
to answer (some of) these questions

• Packet captures at servers can tell us about 
RTT

– Which in turn can tell us about the conditions that 
the flow encounters

• The TCP flow has already punched a hole in 
the NAT

– Which ought to let us probe the path all the way 
to the end host



What sort of congestion did a TCP flow 
encounter?

• Self-induced congestion?
– Clear path, the flow itself induced congestion

– Access links with plan rates

• Already congested path?
– Low available capacity

– Congested interconnect

• Cannot distinguish using just throughput 
numbers
– Plan rates vary widely



TCP Congestion Signatures

• Self-induced congestion fills up an empty 
buffer during slow start

– This causes the RTT to increase (Max RTT – Min 
RTT)

– Also increases variability (Coeff. Of Variation of 
RTT)

• Simple Decision Tree Model Using the RTT 
Parameters



Does it work?

Max – Min RTT

CoV of RTT

• Extensive validation using 
controlled experiments 
testbed

– Build model using 
testbed data

– Minimize complexity



“Validation” using M-Lab data

• Time-span – Cogent 
interconnection issue 
(~Feb 2014)

– Coarse ground truth

– The two event periods 
clearly stand out



Very little needs to change to be able 
to answer (some of) these questions

• Packet captures at servers can tell us about 
RTT

– Which in turn can tell us about the conditions that 
the flow encounters

• The TCP flow has already punched a hole in 
the NAT

– Which ought to let us probe the path all the way 
to the end host



Very little needs to change to be able 
to answer (some of) these questions

• Packet captures at servers can tell us about 
RTT

– Which in turn can tell us about the conditions that 
the flow encounters

• The TCP flow has already punched a hole in 
the NAT

– Which ought to let us probe the path all the way 
to the end host



Probing the TCP Path Using 
BufferTrace

• The Idea: Send TTL-limited packets within a 
TCP flow

– Observe the buildup of buffers

– Trace the path that the flow actually takes

– Send zero-payload TCP packets so as to not break 
the application layer

– Encode hop ID in the sequence number

• Some NATs rewrite the IPID field



Demo

https://github.com/ssundaresan/buffertrace

[Private repo, ping me for access]

Based on:

https://github.com/robertswiecki/intrace

https://github.com/ssundaresan/buffertrace


Drawbacks

• Both techniques depend on buffering

– How much?

• Lack of solid ground truth for congestion 
signatures

– Any labeled data source for interconnect 
congestion?

srikanths@princeton.edu


