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So Much Internet Outage Data… 
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Trinocular 
24x7 since Nov. 2013 

at landfall 

~19 hours after landfall 

~19 hours after landfall 

Hurricane Irma 
landfall 2017-09-10t13:10Z 

at Cudjoe Key, Florida 

2017-08-26t11:56Z 

(5:56am CDT) 

Hurricane Harvey 
landfall 2017-08-26t03:10Z 

at Port O’Conner, Texas 

~24 hours after landfall 

Hurricane Maria 
landfall: 2017-09-20t10:15Z  

at Yaboucoa, P.R. 

ThunderPing, U.MD. 

IODA, UCSD/CAIDA. 
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Too Much Long-Term Data? 

• USC/ISI’s Trinocular: outages, 24x7, since Nov. 2013 

• about 40TB (!) 

• about 20k observations x 4M blocks: 
80G datapoints (!!) 

 

• how to make sense of it? 

– from leaves (edge networks) 

– to trees (events) 

– on the way to understanding the “forest” of Internet reliability 
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Making Sense of Too Much Data 

• geographic visualization 

 

 

• non-geographic visualization 

  

 

• clustering by similarity 
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interactively explore the world 

 
  

 

begin to reveal patterns 
  

 

  

discover underlying dependencies  

 

with too much data 

(40TB and 

80G observations) 
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Making Sense of Too Much Data 

• geographic visualization 

 

 

• non-geographic visualization 

  

 

• clustering by similarity 
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interactively explore the world 

 
  

 

begin to reveal patterns 
  

 

  

discover underlying dependencies  

 

with too much data 

(40TB and  

80G observations) 

Geographic Visualization 

• on the web: https://ant.isi.edu/outage/world/ 

• key features 

– circle size: number of blocks out 

– color: percent of blocks out 

– time selection 

– geographic zoom and pan 

– geography: easy to relate to 

(what operators ask for!) 
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Florida, ~19 hours after landfall 

of Hurricane Irma 

https://ant.isi.edu/outage/world/
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Making Sense of Too Much Data 

• geographic visualization 

 

 

• non-geographic visualization 

  

 

• clustering by similarity 
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interactively explore the world 

 
  

 

begin to reveal patterns 
  

 

  

discover underlying dependencies  

 

with too much data 

(40TB and  

80G observations) 

Outages due to 

Hurricane Sandy 

Non-Geographic Visualizations: 

the Network in Outages 
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(colored areas are outages, 

color shows location) 

goal: reveal patterns 
 

find dependencies 

among networks 

Quan, Heidemann, and Pradkin 

“Visualizing Sparse Internet 

Events: Network Outages and 

Route Changes”, First ACM 

Workshop on Internet 

Visualization, Nov. 2012 
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Outages due to 

Hurricane Sandy 

Global Network Outages:  Prominent and Unknown 
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Mar. 2011 

Japanese Earthquake 

Verizon 

(AS19262) 

Mexico 

(AS8151) 

AT&T and 

Comcast 

our goal: understand small and big 

Jan. 2011 

Egyptian Revolution 
Jan. 2011 

Australian Outage 

(these graphs use a 

slightly earlier analytic 

method [Quan12a], but 

they are qualitatively 

similar) 

The Visualization 

Challenge 

11 
Outage Clustering / 2018-03-15 

here ~1/4th (downsampled to fit the screen) 

of 1/224th of the space (one /8 of IPv4) 

and 1/12th of the duration (one quarter of ~3 years)  

…what’s happening?   what trends?  what’s new? 
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Efficient Visualization 

• visualization with 

linear ordering algorithm 

– runtime: O(n log n log m) 

– for n blocks and m duration timesteps 

• approach:  

– map clustering to sorting: O(n log n) in time 

– sort on multi-timescale bitmap: O(log m) in space 
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Presented at AIMS 2017 (last year!) 

 

Details in “Back Out: End-to-end Inference of 

Common Points-of-Failure in the Internet 

(extended)”. ISI-TR-724, Feb., 2018.  

www.isi.edu/~johnh/PAPERS/Heidemann18b.pdf 

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 

• input:  outage timeseries from 5 /24 blocks 
– b1  1111 1110 1111 1111 

– b2  1111 1111 1111 1110 

– b3  1111 1100 1111 1111 

– b4  1111 1100 0111 1111 

– b5  1111 1110 1111 1111 

Multi-Timescale for Similarity 
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goal: cluster by “similarity” 

b4 

1 0 1 1 

1 1 

1 

downsample 

with mean 
(keep fractions 

internally) 

 

1 1 1 0 0 1 1 1 

concatenate:  1 - 11 - 1011 - 1110 0111 - 1111 1100 0111 1111 

http://www.isi.edu/~johnh/PAPERS/Heidemann18b.pdf
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Multi-Timescale Finds Similarity 
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• input:  outage timeseries from 5 /24 blocks 
– b1  1111 1110 1111 1111 

– b2  1111 1111 1111 1110 

– b3  1111 1100 1111 1111 

– b4  1111 1100 0111 1111 

– b5  1111 1110 1111 1111 

 

• apply to all blocks… 
– b1  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

– b2  1 - 11 - 1111 - 1111 1110 - 1111 1111 1111 1110 

– b3  1 - 11 - 1011 - 1110 1111 - 1111 1100 1111 1111 

– b4  1 - 11 - 1011 - 1110 0111 - 1111 1100 0111 1111 

– b5  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

goal: cluster by “similarity” 

• input:  outage timeseries from 5 /24 blocks 
– b1  1111 1110 1111 1111 

– b2  1111 1111 1111 1110 

– b3  1111 1100 1111 1111 

– b4  1111 1100 0111 1111 

– b5  1111 1110 1111 1111 

 

• apply to all blocks and sort 
– b2  1 - 11 - 1111 - 1111 1110 - 1111 1111 1111 1110 

– b1  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

– b5  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

– b3  1 - 11 - 1011 - 1110 1111 - 1111 1100 1111 1111 

– b4  1 - 11 - 1011 - 1110 0111 - 1111 1100 0111 1111 

 

Multi-Timescale Finds Similarity 
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 result: better clusters  
 (Hamming distance from 8 to 4) 

goal: cluster by “similarity” 

define similar as adjacent in 

multi-timescale vectors 
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The Visualization 

Challenge 
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here ~1/4th (downsampled to fit the screen) 

of 1/224th of the space (one /8 of IPv4) 

and 1/12th of the duration (one quarter of ~3 years)  

…what’s happening?   what trends?  what’s new? 
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One Visualization 

Result 
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here ~1/4th (downsampled to fit the screen) 

of 1/224th of the space (one /8 of IPv4) 

and 1/12th of the duration (one quarter of ~3 years)  

the Time Warner outage 

(the part in this /8) 

some diurnal behavior 
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Making Sense of Too Much Data 

• geographic visualization 

 

 

• non-geographic visualization 

  

 

• clustering by similarity 
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interactively explore the world 

 
  

 

begin to reveal patterns 
  

 

  

discover underlying dependencies  

 

with too much data 

(40TB and 

80G observations) 

Clustering to Discovery Dependencies 

• visualization is nice, but humans can’t look at everything 

 

• new clustering algorithms can discovery dependencies 

– common failure patterns 

– implying common root causes 

– (unconstrained by 2-D visualization) 
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Clustering Insight 

• things fail and recover together => possible dependency 

• when consistently, multiple times => probable dependency 

 
(Details: John Heidemann, Yuri Pradkin, and Aqib Nisar. Back Out: End-to-end Inference of Common Points-

of-Failure in the Internet (extended). ISI-TR-724, February, 2018. 

https://www.isi.edu/%7ejohnh/PAPERS/Heidemann18b.html .) 
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Clustering Approach 
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start with timeseries 

b1  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

b2  1 - 11 - 1111 - 1111 1110 - 1111 1111 1111 1110 

b3  1 - 11 - 1011 - 1110 1111 - 1111 1100 1111 1111 

b4  1 - 11 - 1011 - 1110 0111 - 1111 1100 0111 1111 

b5  1 - 11 - 1111 - 1110 1111 - 1111 1110 1111 1111 

identify clusters: 
b1, b3, b5 are a cluster, 
because 

(b1,b3) (b1,b5) (b3,b5) are all strong edges 
     because Cb1,b2 = 1 

find transitions   [Heidemann18b, Figure 5] look for consistent transitions   [Heidemann18b, Figure 6] 

pick timescale 

https://www.isi.edu/~johnh/PAPERS/Heidemann18b.html
https://www.isi.edu/~johnh/PAPERS/Heidemann18b.html
https://www.isi.edu/~johnh/PAPERS/Heidemann18b.html
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One Clustering 

Result 
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1/224th of the space (one /8 of IPv4) 

and 1/12th of the duration (one quarter of ~3 years)  

the Time Warner outage 

(the part in this /8) 

time 
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the Time Warner outage 

(the part in this /8) 

TW is the biggest 

two clusters 

TW also in >30 

smaller clusters 

Iterative Clustering 
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1/224th of the space (one /8 of IPv4) 

and 1/12th of the duration (one quarter of ~3 years)  

now just 3 days of time 

the Time Warner outage 

(the part in this /8) 

time 
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the Time Warner outage 

(the part in this /8) 

clustering over 3 months shows outages 

but too much data—big TW outage is split 

 

solution: re-cluster on 3 days around outage 

 

result: 4 big clusters 

 

example of iterative clustering, 

discover in full data, then examine details 
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Clustering Beyond Outages 

• cluster generalizes: 
detects temporal correlations 
in big timeseries 

• we’ve applied it to 

– outages 

– anycast catchments 

– routing updates 

• for anycast: 

– map initial vs. new cluster to binary 
value 

– skip outages (from DDoS) 
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anycast catchments for J-Root around 

the 2015-11-30 DDoS attack 
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Outage Clustering from Here 

• just released clustering technical report 

• opens many new questions… 

– relating to other information?  (like power outages) 

– what is “normal”? 

– can we evaluate policy <=> reliablity? 

• datasets at https://ant.isi.edu/datasets/outage and 
https://imactcybertrust.org  

• code available on request 
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clusters of the 

2014 TW outage 

https://ant.isi.edu/datasets/outage
https://imactcybertrust.org/

