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Edge Measurement

❖ Active measurement from 
end hosts where vantage point 
is an experimental factor

• Censorship and traffic tampering 
• Consumer bandwidth/latency


• Network topology 

❖ Requires access to measurement 
endpoints at edge

• Costly to deploy and maintain
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Measurement Platforms

❖ Dedicated server

• CAIDA Archipelago (Ark), 

PlanetLab


❖ Hardware agent

• BISmark, SamKnows, RIPE Atlas


❖ Software agent

• OONI Probe, ICSI Netalyzr
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Obstacles to Sharing
❖ Compatibility 

Each platform has its own usage model and API, 
experimenter must port experiment to each one


❖ Incentives 
Operator bears some of the costs of outside experiment


❖ Trust 
Operator must trust experimenter or verify each experiment
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❖ Incentives 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How do we lower barriers to sharing?



PacketLab Overview
❖ Light-weight universal endpoint interface


• Write experiment once, run anywhere

• Easy to port to new platforms


❖ Remove platform operator from experiments

• Shifts cost of experiment to experimenters


❖ Give platform operators fine-grained control over 
allowed outside experiment behavior

• Reduces burden of trust between operators and experimenters



Disclaimer

❖ Not a new measurement platform


❖ Complements (does not replace) existing interfaces


❖ Single point in large design space

• Want to get critical feedback and stimulate discussion


❖ Preliminary design, not a finished product

• Alpha-quality proof of concept prototypes



Key Technical Ideas

❖ Move experiment logic from network endpoint


❖ Use certificates for access control


❖ Endpoint-experimenter rendezvous


❖ Monitor programs define allowed experiment behaviors
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PacketLab Endpoint
❖ PacketLab endpoint == 

VPN endpoint with measurement knobs and dials


❖ TCP/UDP sockets and raw IP I/O (where available) 

❖ Compatible with multiple deployment regimes

• Software agent, hardware agent, dedicated server


❖ Minimal assumptions about underlying hardware

• Easy to support PacketLab interface on endpoints



Endpoint API
❖ Resembles Berkley sockets


❖ Controller schedules packet 
to be sent immediately or at 
future time (at_time)


❖ Controller polls for received 
packets (npoll)

• Packets not forwarded to 

controller immediately

• Allows controller to manage 

access link load

nopen(sktid, proto) 
nopen(sktid, proto, locport, 
      remaddr, remport) 
!
nclose(sktid) 
!
nsend(sktid, tidx, at_time, data) 
!
npoll(sktid, until_time) 
!
ncap(sktid, filt, until_time) 



Endpoint Information API
❖ Need to provide some endpoint information to controller


• Endpoint IP address, current time (endpoint clock), etc.


❖ Exported via endpoint memory space

• Analogous to hardware device registers


❖ Accessed via endpoint API

• mread(addr, bytecnt)    and    mwrite(addr, data)


❖ Structure of memory space and addresses of values 
defined by PacketLab API



Experiment Controller

❖ Tells endpoints exactly …

• What packets to send and when

• Which packets to capture


❖ Run by experimenter, not endpoint operator

• Shifts cost from operator to experimenter


❖ Ephemeral: exists for duration of experiment only


❖ Needs to implement all protocols used in experiment



Rendezvous
❖ Experiments distribution on pull model: 

Endpoints contact experiment controllers for experiments

• Endpoints need a way to find experiment controllers


❖ Rendezvous server: Directory of active experiments


❖ Experimenters publish experiments to rendezvous server


❖ Endpoints subscribe to (i.e. poll for) experiments


❖ Need a handful of community-operated servers

• Like NTP, DNS, or PGP servers



Access Control
❖ Operators give experimenters digitally signed certificates 

granting access to their platform (endpoints)

• Out of band, based on operator’s specific policy


❖ Each endpoint has a root of trust (set of public keys)

• Only agrees to do experiment signed by a trusted key

• Operators install their key when they deploy endpoint


❖ Experiment controller provides certificate to each 
endpoint to prove it is allowed to do experiment

• Certificates can be chained for delegation

• No direct communication between operator and endpoint



Control of Experiments
❖ Operator will want to restrict the kinds of experiments and 

experimenter can run on endpoints

• Today this is based on trust relationships


❖ Operator specifies experiment monitor program that defines 
what packets experimenter can send during experiment

• Interpreted program encoding fine-grained access control policy

• Similar to BPF, but need slightly richer mechanism


❖ Monitor program attached to experiment certificates

• Presented to endpoint with certificate

• Part of signed certificate (verified to be from operator)



Monitor Program

❖ Executes in a restricted VM (like BPF) 

❖ VM memory space = endpoint memory space

• Accessible using mread and mwrite


❖ Written in a C-like language, compiled to bytecode


❖ Certificates contain compiled bytecode of monitor
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in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [? ] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.



Monitor ProgramPacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [? ] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Structure in endpoint 
memory space, accessed in 
monitor program as struct



Monitor ProgramPacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [? ] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Structure in endpoint 
memory space, accessed in 
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View of IP packet as a struct/union
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Monitor Design Options

❖ C-like custom language

• Familiar to programmers

• Can restrict language features to match model


❖ P4 dataplane programming language

• Existing toolchain support

• Parse arbitrary protocols


❖ Same bytecode representation



Encouraging Sharing

❖ PacketLab defines mechanism, not policy


❖ Super-secret subversive goal:

• Make PacketLab attractive even if you don’t want to share …

• … so you have no excuse not to share later


❖ PacketLab project may try to encourage sharing


❖ PacketLab protocol is the mechanism for doing so



Where We Are Today

❖ IMC 2017 short paper


❖ Interest from experimenters


❖ Interest from platform operators


❖ Working on reference implementation

• For Unix-like operating systems

PKTLAB



Conclusion

❖ PacketLab: an universal interface to network 
measurement platforms (endpoints)


❖ Value proposition for experimenters:  
a single interface to multiple measurement platforms

• Write experiment once, run anywhere


❖ Value proposition for platforms operators: 
gives experimenters controlled access to your platform


