
PacketLab:
A Universal Measurement
Endpoint Interface
Kirill Levchenko with
Amogh Dhamdhere, Bradley Huffaker, kc claffy,
Mark Allman, Vern Paxson

PKTLAB

Edge Measurement

❖ Active measurement from 
end hosts where vantage point 
is an experimental factor

• Censorship and traffic tampering
• Consumer bandwidth/latency

• Network topology

❖ Requires access to measurement
endpoints at edge

• Costly to deploy and maintain

Measurement 
endpoint

Measurement 
endpoint

Experiment 
controller

Measurement Platforms

❖ Dedicated server

• CAIDA Archipelago (Ark),

PlanetLab

❖ Hardware agent

• BISmark, SamKnows, RIPE Atlas

❖ Software agent

• OONI Probe, ICSI Netalyzr

Measurement Platforms

❖ Dedicated server

• CAIDA Archipelago (Ark),

PlanetLab

❖ Hardware agent

• BISmark, SamKnows, RIPE Atlas

❖ Software agent

• OONI Probe, ICSI Netalyzr

Measurement Platforms

❖ Dedicated server

• CAIDA Archipelago (Ark),

PlanetLab

❖ Hardware agent

• BISmark, SamKnows, RIPE Atlas

❖ Software agent

• OONI Probe, ICSI Netalyzr

Obstacles to Sharing
❖ Compatibility 

Each platform has its own usage model and API, 
experimenter must port experiment to each one

❖ Incentives 
Operator bears some of the costs of outside experiment

❖ Trust 
Operator must trust experimenter or verify each experiment

Obstacles to Sharing
❖ Compatibility 

Each platform has its own usage model and API, 
experimenter must port experiment to each one

❖ Incentives 
Operator bears some of the costs of outside experiment

❖ Trust 
Operator must trust experimenter or verify each experiment

How do we lower barriers to sharing?

PacketLab Overview
❖ Light-weight universal endpoint interface

• Write experiment once, run anywhere

• Easy to port to new platforms

❖ Remove platform operator from experiments

• Shifts cost of experiment to experimenters

❖ Give platform operators fine-grained control over
allowed outside experiment behavior

• Reduces burden of trust between operators and experimenters

Disclaimer

❖ Not a new measurement platform

❖ Complements (does not replace) existing interfaces

❖ Single point in large design space

• Want to get critical feedback and stimulate discussion

❖ Preliminary design, not a finished product

• Alpha-quality proof of concept prototypes

Key Technical Ideas

❖ Move experiment logic from network endpoint

❖ Use certificates for access control

❖ Endpoint-experimenter rendezvous

❖ Monitor programs define allowed experiment behaviors

Traditional Endpoint Model

Endpoint

Experiment Controller

Control logic

Experiment logic

Network interface

PacketLab Endpoint Model

Endpoint

Experiment Controller

Control logic
Experiment logic

Network interface

PacketLab Endpoint Model

Endpoint

Experiment Controller

Control logic
Experiment logic

Network interface

PacketLab Interface

PacketLab Endpoint
❖ PacketLab endpoint == 

VPN endpoint with measurement knobs and dials

❖ TCP/UDP sockets and raw IP I/O (where available)

❖ Compatible with multiple deployment regimes

• Software agent, hardware agent, dedicated server

❖ Minimal assumptions about underlying hardware

• Easy to support PacketLab interface on endpoints

Endpoint API
❖ Resembles Berkley sockets

❖ Controller schedules packet
to be sent immediately or at
future time (at_time)

❖ Controller polls for received
packets (npoll)

• Packets not forwarded to

controller immediately

• Allows controller to manage

access link load

nopen(sktid, proto)
nopen(sktid, proto, locport,
 remaddr, remport)
!
nclose(sktid)
!
nsend(sktid, tidx, at_time, data)
!
npoll(sktid, until_time)
!
ncap(sktid, filt, until_time)

Endpoint Information API
❖ Need to provide some endpoint information to controller

• Endpoint IP address, current time (endpoint clock), etc.

❖ Exported via endpoint memory space

• Analogous to hardware device registers

❖ Accessed via endpoint API

• mread(addr, bytecnt) and mwrite(addr, data)

❖ Structure of memory space and addresses of values
defined by PacketLab API

Experiment Controller

❖ Tells endpoints exactly …

• What packets to send and when

• Which packets to capture

❖ Run by experimenter, not endpoint operator

• Shifts cost from operator to experimenter

❖ Ephemeral: exists for duration of experiment only

❖ Needs to implement all protocols used in experiment

Rendezvous
❖ Experiments distribution on pull model: 

Endpoints contact experiment controllers for experiments

• Endpoints need a way to find experiment controllers

❖ Rendezvous server: Directory of active experiments

❖ Experimenters publish experiments to rendezvous server

❖ Endpoints subscribe to (i.e. poll for) experiments

❖ Need a handful of community-operated servers

• Like NTP, DNS, or PGP servers

Access Control
❖ Operators give experimenters digitally signed certificates

granting access to their platform (endpoints)

• Out of band, based on operator’s specific policy

❖ Each endpoint has a root of trust (set of public keys)

• Only agrees to do experiment signed by a trusted key

• Operators install their key when they deploy endpoint

❖ Experiment controller provides certificate to each
endpoint to prove it is allowed to do experiment

• Certificates can be chained for delegation

• No direct communication between operator and endpoint

Control of Experiments
❖ Operator will want to restrict the kinds of experiments and

experimenter can run on endpoints

• Today this is based on trust relationships

❖ Operator specifies experiment monitor program that defines
what packets experimenter can send during experiment

• Interpreted program encoding fine-grained access control policy

• Similar to BPF, but need slightly richer mechanism

❖ Monitor program attached to experiment certificates

• Presented to endpoint with certificate

• Part of signed certificate (verified to be from operator)

Monitor Program

❖ Executes in a restricted VM (like BPF)

❖ VM memory space = endpoint memory space

• Accessible using mread and mwrite

❖ Written in a C-like language, compiled to bytecode

❖ Certificates contain compiled bytecode of monitor

Monitor ProgramPacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [?] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Monitor ProgramPacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [?] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Structure in endpoint
memory space, accessed in
monitor program as struct

Monitor ProgramPacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [?] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Structure in endpoint
memory space, accessed in
monitor program as struct

View of IP packet as a struct/union

PacketLab: A Universal Measurement Endpoint Interface IMC ’17, November 1–3, 2017, London, United Kingdom

in_addr_t ping_dst = 0; // destination of traceroute

uint32_t send(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP &&
pkt->ip.src == info->addr.ip &&
pkt->ip.icmp.type == ICMP_ECHO_REQUEST)

{
return len; // allow
ping_dst = pkt->ip.dst;

} else
return 0; // deny

}

uint32_t recv(const union packet * pkt, uint32_t len) {
if (pkt->ip.ver == 4 && pkt->ip.ihl == 5 &&

pkt->ip.proto == IPPROTO_ICMP && (
(pkt->ip.icmp.type == ICMP_ECHO_REPLY &&
pkt->ip.src == ping_dst) ||

(pkt->ip.icmp.type == ICMP_TIME_EXCEEDED &&
pkt->ip.icmp.orig.ip.src == info->addr.ip &&
pkt->ip.icmp.orig.ip.dst == ping_dst)))

return len; // allow
else

return 0; // deny
}

Figure 2: Fragment of a monitor program for a traceroute exper-
iment. The send entry point in the monitor is called by the end-
point to determine if a packet can be sent. The monitor �rst checks
that the packet is an ICMP ���� ������ packet and then stores
the destination address in the global ping_dst. The recv entry
point is called by the endpoint to determine whether the controller
is allowed to capture the packet. It checks that the packet is an
ICMP ���� ����� packet from the destination or a ���� ��������
packet generated in response to the original ���� ������. Note
that recvuses the global variable ping_dst to ensure that only pack-
ets corresponding to the original ���� ������ are returned to the
controller.

ACKNOWLEDGMENTS
The authors would like to acknowledge the participants of the 2017
AIMSworkshop [?] for their insightful feedback on PacketLab. This
work was supported by NSF grants CNS-1518918 and CNS-1513283,
and by DHS S&T contract HHSP 233201600012C.

Monitor Program

Monitor Design Options

❖ C-like custom language

• Familiar to programmers

• Can restrict language features to match model

❖ P4 dataplane programming language

• Existing toolchain support

• Parse arbitrary protocols

❖ Same bytecode representation

Encouraging Sharing

❖ PacketLab defines mechanism, not policy

❖ Super-secret subversive goal:

• Make PacketLab attractive even if you don’t want to share …

• … so you have no excuse not to share later

❖ PacketLab project may try to encourage sharing

❖ PacketLab protocol is the mechanism for doing so

Where We Are Today

❖ IMC 2017 short paper

❖ Interest from experimenters

❖ Interest from platform operators

❖ Working on reference implementation

• For Unix-like operating systems

PKTLAB

Conclusion

❖ PacketLab: an universal interface to network
measurement platforms (endpoints)

❖ Value proposition for experimenters:  
a single interface to multiple measurement platforms

• Write experiment once, run anywhere

❖ Value proposition for platforms operators: 
gives experimenters controlled access to your platform

