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Abstract—Email remains a popular communication tool de-
spite the emergence of new messaging systems, however, this
popularity also attracts individuals with malicious intentions.
Despite the efforts of current email filtering to keep up with the
email-based threat vectors, unsolicited emails still keep reaching
millions of targets. The current solutions are mainly focused on
distinguishing ham from spam/phishing, leaving a gap in the
identification and analysis of other unsolicited emails such as
scams and adult content. In this paper, we present a study on
the development of a more granular approach for sanitizing and
categorizing unsolicited emails, specifically focusing on spam,
phishing, scam and adult content. We design and evaluate a
method for classifying unsolicited emails that can aid incident re-
sponse teams in extracting contextual potential Threat Indicators
(TIs). We train a machine learning language-agnostic classifier
that achieves high accuracy with a novel set features such as
attachments and TIs characteristics. Our results show that spam
continues to drive a great portion of unsolicited emails together
with phishing. Our analysis of URLs extracted from unsolicited
emails revealed a surprising finding - over 80% of these TIs were
not flagged as malicious by other threat feeds. This highlights
the need for more effective methods of sharing malicious emails
and their associated TIs.

I. INTRODUCTION

Email remains a widely used method of communication for
both business and personal use [1], but its popularity also
attracts individuals with malicious intentions. A large portion
of the population has had to deal with spam, so much so that
it is estimated that 70% of all business email is spam and
40% of social media accounts are used to distribute spam [2].
Unsolicited emails are also used very commonly as a constant
source of various scams and online threats including deception
and distribution of phishing or malware attacks and is therefore
recognized as one of the most important threat types when
it comes to DNS abuse mitigation and identification [3].
However, since the spectrum of threats that spam can deliver
could be broad, specially for incident response and threat
mitigation, it is important to be able to identify the specific
type of threat an unsolicited email attempts to deliver [4].

Unsolicited emails can be detected and reported via various
means. Commercial email clients (e.g., Gmail and Outlook)
have a mail filter that determines whether an email is un-
solicited or not [5], [6]. Typically, within these clients there
is a also a feedback loop where the user can tag emails as
spam. This process is complex; due to the constant evolution
of the techniques used to camouflage content and deceive

spam filters, it is necessary to read the subject of the email
and analyze the body of the email. Alternatively, there are
open-source solutions for identifying unsolicited emails such
as SpamAssassin [7]. Similarly, the Anti Phishing Working
group (APWG) [8] provides an unsolicited email feed that
contains millions of emails as captured by its members.
Despite the availability of solutions for identifying unso-
licited emails (e.g., [9], [10]), there is a gap in the ability to
distinguish between email-delivery scams, spam, and phishing
emails. Distinguishing between different types of unsolicited
emails is not merely an academic pursuit; it is a critical
necessity in the battle against cyber threats. Each type of
unsolicited email, whether it be spam, phishing, scams, or
adult content, presents distinct risks and consequences for indi-
viduals and organizations [ 1]. Failure to accurately categorize
and understand these threats can lead to ineffective mitigation
strategies and increased vulnerability [12]. This paper aims at
unraveling the complexities of unsolicited emails and accu-
rately classifying them. This empowers incident responders to
prioritize their actions, deploy targeted countermeasures, and
protect against psychological, financial, and data-related harm.
This leads us to investigate the following research questions:

(RQ1): What are the different types of emails are reported as
unsolicited emails?

(RQ2): What threats that can be identified from these emails?
How do the extracted URLs from unsolicited emails
compare to those on high-reputable reputation block
lists and AV vendors in terms of coverage?

How can we categorize the different types of emails
to contextualize TIs? How does the language of the
emails impact the categorization?

(RQ3):

To answer these questions, we leverage a total of 10.8 mil-
lion emails collected during 4.5 years (May 2018-Dec 2022)
which were reported as phishing to the APWG exchange [13].
Using this dataset, we create an email processing pipeline to
sanitize the emails and extract features that can be used to
split these emails intro four categories: spam, scam, phishing
and adult content. The main contributions of this paper are:

o« We develop a method for classifying unsolicited emails,
specifically for spam, phishing, scam, and adult content.

o We evaluate the adequacy of different models with various
features such as an analysis of links within the email, sender



domains, and attachments.

« We evaluate the effectiveness of the models on classify-
ing non-English languages (i.e., Spanish, French, Russian,
Japanese, Portuguese and German).

o We extract TIs that can aid incident response teams to take
appropriate actions. We assess the coverage of these TIs by
comparing the extracted URLs against both reputation block
lists and Virustotal [14].

II. RELATED WORK
A. Email classification

Several surveys have already captured the different tech-
niques (e.g., [15]), mostly leveraging machine learning. Youn
and McLeod [16] classified email data using four different
classifiers (Neural Network, SVM classifier, Naive Bayesian
Classifier, and J48 classifier) and showed that a simple J48
classifier could be efficient for datasets of emails that could
be classified as binary tree. Dredze et al. [17] presented several
algorithms for automatically recognizing emails as part of an
ongoing activity, including SimSubset and SimOverlap algo-
rithms that compare the people involved in an activity against
the recipients of each incoming message, and a SimContent
algorithm that uses IRR to classify emails into activities
using similarity based on message contents. There have also
been some studies focusing on the specifics of a particular
language to classify emails. Alsmadi and Alhami [18] used
clustering and classification algorithms to perform folder and
subject classifications on a large set of personal emails. They
showed that classification based on NGram is effective for
such large text collections with Bi-language content (English
and Arabic). Our work builds on the knowledge of automatic
email classification, but differs from these studies as we aim
to build a language-agnostic classifier specific for unsolicited
emails, i.e., our aim is not to identify ham.

B. Ham, Spam, Phishing detection

Machine learning and artificial intelligence techniques have
been widely used in the detection of email-based attacks such
as phishing and spam [19], [20]. Existing studies have pro-
posed various approaches to improve the accuracy of detection
and have identified future research directions in this area [21].
Fette et al. [22] proposed a method for detecting phishing
emails using machine learning. They evaluated their approach
on a dataset of approximately 860 phishing emails and 6950
non-phishing emails, achieving a detection rate of over 96%
and a mis-classification rate of only 0.1% of legitimate emails.
Yasin and Abuhasan [23] proposed an intelligent classification
model for detecting phishing emails using knowledge discov-
ery, data mining, and text processing techniques. Hayati and
Potdar [24] analyzed existing works in two different categories
of spam domains, including email spam and image spam. They
presented an evaluation of spam detection frameworks and
identified future research directions.

In this paper, we select machine learning models that have
been previously identified as having good performance [25]
to use them in a new context, i.e., multiclass classification of

unsolicited emails. We build on the features already proven
to be useful [26] for detection to create a novel set of
features for classification of exclusively unsolicited emails.
By extracting non only content-specific features, we train
different algorithms using the threat indicators within the
emails subject, body and attachments. This novel expansion of
features increases the performance of the classifier achieving
an accuracy above 93.1% (TF-IDF).

III. METHODOLOGY
A. Data collection

The unsolicited email dataset used in our study was obtained
from the APWG [8] archive of emails reported as phishing,
spanning from May 2018 to December 2022. The APWG is a
collaboration of security experts, businesses, law enforcement,
and other stakeholders impacted by, or combating, phishing
attacks. In our effort to better understand the current landscape
of unsolicited emails, we collected 10,849,051 (10.85M) mil-
lion emails reported as phishing. Although our manual process
of generating ground truth reveals that there are no legitimate
emails (ham) in this dataset, it is evident that not all emails in
the dataset are related to phishing. Table I provides a summary
of the data fields in the dataset.

TABLE I: Dataset fields

Field Description

ID Identifier of the reported email

Email subject Content of the email subject in the reported
email

Email address of the reporter who sent the
email

Email addresses to where the reported email
was sent

Raw content of the email’s body

Raw content of the email’s headers
Email’s reported date and time

Files attached to the email

Sender email
Recipient email

Email body
Email headers
Date Reported
Attachments

B. Data processing

Figure 1 shows the different phases of the email processing
pipeline. In the next sections, we delve into each stage of this
pipeline in more detail, exploring the different techniques and
tools that we used to accomplish each task.
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body/subject attachments language

Email
Features

Emails

-

Extract TIs

Fig. 1: Pipeline to extract email features

1) Parse email body/subject: The initial step in process-
ing the email body and subject is to remove HTML tags,
alert messages generated by email servers, empty lines, non-
alphanumeric characters, and characters added to the begin-
ning of lines in certain email clients when forwarding mes-
sages. The result is only the text of the subject and the body



of the messages, which provides the necessary information
to facilitate the task of classification. The data process as
described in Figure 2 is an iterative process that involves
several steps to ensure that the final text extracted from each
email is free of extraneous characters and noise. The first
step involves the decoding of base64 emails, which are then
passed through a parser to remove any HTML code in the
email, preventing the generation of noise or unwanted text.
The next step involves the removal of any text obfuscation in
the email and the decoding of emojis. Emojis are converted to
text, decoded, and then converted back to the original emojis
to ensure they are retained in the final text. During the email
cleaning process, we found that it is common to have text
obfuscation in both the subject and body of the email. The
obfuscation consists of replacing Latin alphabet letters with
visually similar letters that have a different ASCII code.
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Fig. 2: Email cleaning pipeline.

2) Processing attachments: To process email attachments,
we first extract the text embedded in any file attached to the
emails. This requires the use of OCR techniques (e.g., [27]),
which can be computationally expensive when handling a large
volume of emails. Some cybercriminals use content obscuring
techniques, such as distorting images, to the extent that OCR
techniques cannot extract any meaningful text. In our dataset,
we did not encounter content obscuring techniques for text
embedded into attached images.

3) Language identification: Detecting the language of an
email can affect the vectorization and extraction of features be-
cause different languages have unique characteristics in terms
of grammar, syntax, and vocabulary. We start by combining
the text from the subject and the body to then detect the
language of the merged text. To do this, we use Freeling [28].

For each query, Freeling returns the language of the text and
the confidence level of the detected language.

4) Extraction of Threat Indicators (TI): We extracted
potential TIs (i.e., bitcoin addresses, hashes, URLs, email
addresses, IP addresses and domain names) that may be
linked to the type of attack. We utilized regular expressions
to identify URLs and domain names. We extract of URLs
and domain names derived from both the text of emails
and text derived from images. When we found defanged
strings [29], we refanged them and extracted the URL and
domain name that matched the regular expression. We devel-
oped a regular expression to match Bitcoin addresses. Bitcoin
addresses are base58check encoded integers with a check-
sum. Our regular expression to match Bitcoin addresses is:
\b[13] [a-km-zA-HJ-NP-21-9]{25, 34} \b. We vali-
date the checksum of the identified Bitcoin addresses.

C. Email classification

We manually inspected a large set of emails (a random
sample of 2,500) and identified common categories of unso-
licited emails. Then, two independent researchers developed a
coding scheme based on these categories and used an in-house
content analysis tool to analyze a larger set of emails. This
process resulted in the identification of four distinct categories
of unsolicited emails:

o Phishing: emails designed to deceive and trick the recipient
into revealing sensitive or confidential information, such as
login credentials or financial details. Phishing emails often
appear to come from a legitimate source, such as a bank
or a trusted organization, but are actually sent by criminals
seeking to obtain personal information. The content of a
phishing email may include a request to click on a link,
download an attachment, or provide personal information
through a form or reply message.

e Scam: emails that are designed to trick the recipient into
taking a particular action that benefits the scammer, such as
sending money, or providing personal information. Unlike
phishing emails, which typically seek to obtain personal or
financial information, scam emails may involve a wide range
of deceptive tactics, such as offering fake job opportunities,
lottery winnings, or other fraudulent schemes.

e Spam: emails that are unsolicited and usually sent in bulk
to a large number of recipients. Spam emails often contain
advertising or promotional text, and may be sent for com-
mercial purposes, or to drive traffic to a website.

e Adult content: emails that contains adult-related content.
While adult content emails can be an annoyance and may
be considered inappropriate or offensive by some recipients,
they generally do not pose a direct security threat or attempt
to extract sensitive information from the recipient.

While these categories are not always exclusive (e.g., a
phishing email can also use adult content), we use a simple
rule of thumb that always favored labeling an email with the
most harmful category. To facilitate the agreement between
the two coders, we used the following preference classification
rule: Phishing > Scam > Spam > Adult content.



IV. DESCRIPTIVE RESULTS
A. Reported Emails

Over the span of 56 months, more than 10.8 million emails
were reported to the APWG. The number of emails per month
exhibited a clear increasing trend (see Figure 3). The average
monthly number of reported emails in 2019 was around
85,000, while in 2022 it was 364,000, representing a four-
fold increase. Given the nature of this inbox, it was common
for the same phishing email to be reported multiple times by
different senders. Out of the 10.8 million emails, only 7.5
million contained unique combinations of subject and body,
meaning that 30.5% were duplicates.
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Fig. 3: Number of reported unsolicited emails per month.

B. Email languages and alphabets

The alphabets found in the body of text and subject lines
of unsolicited emails are varied, but the majority of the text is
composed of Latin characters. As shown in Figure 4a, Latin
characters make up 99.96% of the text, which is not surprising
since Latin is the most commonly used alphabet in the world.
The other alphabets found in these emails are CJK (Chinese,
Japanese, and Korean), Mathematical, Hiragana, Katakana,
Cyrillic, Katakana-Hiragana, Arabic, Halfwidth, and Greek.
These other alphabets are likely used by spammers and scam-
mers to try to bypass spam filters or to appear as if the email
is coming from a legitimate source.
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Fig. 4: Percentage of emails per alphabet and language

Figure 4b shows the top 10 detected languages in the
dataset. The great majority —94.1% of the emails— are in
English, followed by Spanish (0.96%), French (0.94%), and
German (0.55%), with the remaining 3.43% distributed among
79 other languages. This distribution of languages is not
surprising as spammers and scammers aim at creating a

sense of familiarity or authenticity that would not always
be possible with a message written in English. For example,
an email written in Spanish may be more likely to fool a
Spanish-speaking individual into thinking that the message
is legitimate. Similar to the use of different alphabets, using
languages other than English is also an attempt to evade spam
filters that are designed to flag emails with certain keywords
or phrases in English [30].

C. Threat Indicators (TIs)

Table II provides insights into the types and frequency of TIs
extracted from the sanitized email dataset. These TIs will be
later used to classify the type of threat that was reported. The
table shows that email addresses' are the most common type
of TI extracted, with 7.5 million instances and being present
in 69.46% of the total number of emails. This indicates that
attackers frequently use email addresses in their attacks, in this
case as means of communication. Note that some contributors
do not forward the whole unsolicited email but a summary,
and hence, not all emails contain the original email address
from which the email was sent. The second most common
TI type is domain names, accounting for 5.9 million instances
(54.65%). Attackers often use domain names to host malicious
content. Emails also contain potentially malicious URLSs, but
they are less prevalent (26.64%) IPv4 addresses are the third
most common TI type, reported in 2.5 million instances (23%).
IPv6 addresses are rare (0.79%). Other TI types like MD5
hash and SHA1 hash have lower frequencies, indicating they
are less commonly used by attackers. However, even a small
number of occurrences of these TI types can help identify
potential threat types.

TABLE II: Extracted TIs

TI Type Count  Ratio (%)
BTC address 6,890 0.06
Domain name 5,901,806 54.65
Email address 7,501,933 69.46
IPv4 address 2,484,354 23.00
IPv6 address 85,550 0.79
MD5 hash 277,900 2.57
SHA1 hash 23,492 022
SHA256 hash 2,1289 0.20
URL 2,877,114 26.64

Figure 5 shows the distribution of TIs extracted from
unsolicited emails over time. The number of domains and
emails remained high throughout the monitored period, with
the number of emails increasing to a peak in January 2021. The
use of IP addresses as TIs also followed a similar pattern, with
the number of IPv4 and IPv6 addresses used as TIs peaking
in January 2021 and April 2022, respectively. In contrast, the
number of Bitcoin addresses used as TIs varied widely over
the monitored period. The number of URLs used as TIs was
relatively low. The number of hashes used as TIs was also
relatively low and did not follow a specific pattern over the
monitored period.

!Note that these addresses do not represent the reporter’s email address, but
rather the address of the sender of the unsolicited email which is not always
present.
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Fig. 5: Number of extracted threat indicators over time

V. BUILDING A CLASSIFIER
A. Feature Engineering

In order to classify the type of unsolicited email, we
extract features that are relevant to this task. We use four
different types of features: reported features, content features,
TI features, and attachment features.

a) Reporter Features: Understanding the differences in
the reporting behavior of different users can be crucial in iden-
tifying patterns in unsolicited emails. By extracting reporter
features, we can identify the type of emails that different
users are more likely to report. For example, some users
may be more likely to report phishing emails, while others
may be more likely to report spam emails. By identifying
these differences, we can more accurately classify the type of
unsolicited emails. We consider the number of emails reported
by the sender, the domain name of the email address, and the
sender’s activity period (i.e., the number of days from the first
to the the last reported email).

b) Content Features: The content of an email can reveal
important information about its type. By extracting content
features, we can identify patterns that are indicative of different
types of unsolicited emails, such as phishing or scam emails.
We include eight types of features such as the number of
characters, number of words, number of URLs or domain
names, presence of URL in the subject, obfuscation of content,
and non-Latin characters. For example, the use of obfuscation
techniques or non-Latin characters may be indicative of a spam
email.

c) TI Features: TIs are pieces of information that can
indicate the presence of a security threat. By extracting TI
features, we can identify patterns that are indicative of different
types of unsolicited emails. We first capture the type of TI as
a feature in itself, and then design the following five features
specific to URLs, domains, and email/IP addresses: number of
characters in the domain name, number of characters in path,
number of digits, and top-level domain. For example, certain
types of URLs or domains may be associated with phishing
attempts, while others may be associated with spam emails.

d) Attachment Features: Attachments can contain impor-
tant information that can help identify the type of unsolicited
email. For example, the use of certain symbols or characters
in an attached image may be indicative of a phishing attempt.
The five types of attachment features we designed include the
number of characters, number of words, number of symbols,

number of digits, and number of URLs or domain names.
These features help us assess if the images in the emails
are related to potential attacks by capturing differences in the
extracted strings.

B. Feature selection

Feature selection is a crucial step in unsolicited email
classification to ensure that only the most informative features
are used for model training and inference. By selecting rele-
vant features, the model can achieve higher accuracy while
reducing overfitting. One widely used method for feature
selection is Boruta [31], which compares and statistically tests
the importance of features by training a random forest with
shadow features that do not contribute to classification. In the
context of unsolicited email classification, the feature selection
process involves selecting the most informative features from
the 869 dimensional feature space. Using the Boruta method,
24 out of the 869 features were considered important, and the
remaining 845 features were deemed unimportant. In fact, only
content features and TI features were considered important.

C. Balancing classes

Based on the ground truth created manually and upon
checking the class distribution, it is observed that they are
imbalanced, with some categories having more samples than
others. The spam category has 47% of all samples, followed
by phishing with 20%, scam with 18%, and adult content with
15%. Such imbalanced datasets can cause bias during training
or deteriorate performance. Therefore, three techniques have
been considered to balance the datasets: class augmentation,
downsampling and upsampling. After analyzing the different
methods used to balance the datasets (see Table III), we
determined that, while data downsampling and data augmenta-
tion were also considered, data upsampling provided the best
performance. To mitigate the risk of overfitting when using
upsampling, we employed cross-validation.

TABLE III: Classifier performance results for balanced classes

Accuracy  Fscore  Precision  Recall

Unbalanced 77.07 76.87 7822  77.07
Balanced

Augmented 85.71 85.57 86.03 85.71

Downsampled 77.81 71.57 78.83 77.81

Upsampled 89.90 89.89 90.39 89.90

D. Training and evaluation

For this phase, we selected four models to verify their
effectiveness in creating a classifier for unsolicited emails:
SVC [32], NB [33], LSTM [34], and TF-IDF [35]. Addition-
ally, the variations LinearSVC [36] and BILSTM [37] have
been used, making a total of six models. All six models are
supervised learning models that require a properly labeled
dataset.

For the testing and training phase, the combination of email
fields is a crucial component to be tested with the different
models. The fields subject, body, and text from the attachments



are combined together in tuples. The newly formed text is then
vectorized to generate an integer value matrix, based on the
vectorization technique used in each model.

In the training phase, the selected models will be tested with
a combination of email fields and different features. These ex-
periments will test the models using the following email field
combinations: body, subject+body, subject+body+attachment,
features+body, features+subject+body, and features+ sub-
ject+body+imagetext. For evaluating the models, we employed
Stratified K -fold Cross-Validation (SKCV) [38] with K = 10.

The results showed that the combination of fields (subject,
body, and attachments) in the email impacted the models’
performance (see Table IV). Our results unveil noteworthy
disparities in performance across the examined models, with
BILSTM and LSTM standing out as the formidable fron-
trunners. Notably, BILSTM exhibited commendable precision
(91.8%) and F-score (91.6%), when using subject, body and
attachment data. LSTM, on the other hand, showcased ex-
ceptional precision (93.5%) when incorporating subject and
body information, underscoring its efficacy in distinguish-
ing unsolicited emails. Conversely, LinearSVC encountered
considerable challenges, consistently yielding lower precision
scores across all feature combinations. Meanwhile, the resolute
NB and SVC models displayed robust performance, yielding
precision rates ranging from 82% to 87.4%. The incorporation
of TIs did not improve the performance of the machine learn-
ing models for unsolicited email classification, as evidenced by
the marginal or no significant changes observed in accuracy,
F-score, precision, and recall metrics across different models.

TABLE IV: Models performance results

Model Features Accuracy  F-score  Precision  Recall
BILSTM TIs, body 88.7 89.1 90.3 88.7
TIs, subject, body 87.3 87.5 87.9 87.3
TIs, subject, body, attch 90.7 90.7 90.8 90.7
body 90.0 90.1 90.3 90.0
subject, body 91.1 91.3 91.9 91.1
subject, body, attch 91.6 91.6 91.8 91.6
LST™M TIs, body 90.9 91.1 91.6 90.9
TIs, subject, body 92.4 92.6 92.9 924
TIs, subject, body, attch 90.4 90.6 90.9 90.4
body 90.9 91.0 91.4 90.9
subject, body 92.2 92.5 93.5 922
subject, body, attch 91.6 91.7 922 91.6
LinearSVC  TIs, body 85.9 85.7 85.8 85.9
TIs, subject, body 86.5 86.3 86.4 86.5
TIs, subject, body, attch 88.3 88.2 88.2 88.3
body 85.0 84.7 85.0 85.0
subject, body 86.1 85.9 86.0 86.1
subject, body, attch 87.4 87.2 872 87.4
NB TIs, body 82.0 81.8 822 82.0
TIs, subject, body 83.7 83.6 84.0 83.7
TIs, subject, body, attch 84.1 84.0 84.4 84.1
body 82.1 81.9 82.0 82.1
subject, body 83.6 83.6 83.9 83.6
subject, body, attch 84.2 84.1 84.4 84.2
SvC TIs, body 81.5 81.8 84.0 81.5
TIs, subject, body 84.2 84.4 86.0 84.2
TIs, subject, body, attch 85.2 85.4 86.8 85.2
body 81.5 81.8 84.1 81.5
subject, body 83.7 84.0 85.8 83.7
subject, body, attch 84.8 85.0 86.5 84.8
TFIDF TIs, body 92.8 92.8 92.8 92.8
TIs, subject, body 91.1 91.0 91.2 91.1
TIs, subject, body, attch 91.6 91.6 91.9 91.6
body 923 92.3 92.4 92.3
subject, body 93.1 93.1 93.1 93.1
subject, body, attch 92.0 91.9 92.2 92.0

1) Language impact: Using the LSTM classifier with all
features, we evaluate its performance against emails which

were predominantly written in a specific language. We limited
this analysis to the top seven common language in our dataset,
i.e., English, Spanish, French, German, Portuguese, Japanese,
and Russian. The results are shown in Figure 6.
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Fig. 6: Classifier performance per email language

Overall, the classifier performed well in classifying un-
solicited emails in all languages, with precision, recall, F-
score, and accuracy scores ranging from 87.4% to 92.9%. The
highest-performing language was German, followed closely
by English and French, while the lowest-performing language
was Japanese in terms of precision, recall, and F-score.

There could be several reasons why the performance of the
classifier varies depending on the language of the unsolicited
emails. One reason could be the structural differences between
languages. Some languages, such as Japanese, have more
complex grammatical structures, while others, such as English,
have simpler structures. The classifier may perform better on
languages with simpler structures because it can more easily
learn patterns in the text.

VI. THREAT EVOLUTION

Using the classifier with the highest F-score as trained in
section V, we classified all emails in our dataset. The results
show that unsolicited emails have evolved over the years in
terms of their type and volume. Figure 7 shows the number
of reported cases of different categories of unsolicited emails
from 2018 to 2022.

400000 EEm Adult

Phishing
Scam
I Spam

300000

200000

# Emails

100000

el o ;

—

0
May Sep Jan May Sep Jan May Sep Jan May Sep Jan May Sep
2019 2020 2021 2022

Fig. 7: Number of unsolicited emails per type over time.

The number of reported cases of unsolicited emails has
increased steadily over the years, with the most significant
increase in spam emails in 2022. The type of unsolicited
emails has also evolved, with adult and phishing-related emails
increasing significantly. Between 2018 and 2023, the number



of reported cases of adult-related unsolicited emails increased
steadily, with the highest number of reports in 2022. Phishing-
related emails also increased during this period, with a sharp
increase in 2022. Scam emails peaked in 2019 and then
experienced a slight decrease in 2020 and 2021, with a slight
increase in 2022. Spam emails, on the other hand, have
consistently remained the most prevalent category.

A. TIs per email type

Table V shows the percentage of emails containing a par-
ticular TI categorized by the type of unsolicited email. The
distribution of TIs varies depending on the type of unsolicited
email, with domain-based TIs being the most common type for
phishing and spam, email-based TIs being the most common
for scams. Looking at the distribution of TIs, the most common
type of TI for all four categories of unsolicited email are
domain names, with a significantly higher number of TIs for
phishing and spam than the other two categories. The number
of domain-based TIs for phishing and spam is in the millions,
which is several times higher than the domain-based TIs for
the other two categories.

TABLE V: Threat indicator concentration per email category

TI Adult  Phishing Scam  Spam
BTC 0.04 0.02 0.02 0.05
domain 36.98 39.32 3229 4374
email 49.39 21.99  50.00 29.75
hash 0.73 1.38 1.25 1.33
IP address  12.16 16.67 15.86 22.46
URL 0.70 20.62 0.57 2.67

VII. EXTRACTED URLS COVERAGE

To assess the uniqueness and overlap of the extracted URLs,
we conducted a comparative evaluation against VirusTotal
(VT) [14] and multiple reputation blocklists (RBLs) that
publish malicious URLs.

A. Comparison with VirusTotal

We used VT to analyze whether the antivirus engines flag
malicious URLs collected by our method. VT evaluates the
maliciousness as reported by around 90 different types of
antivirus engines. We selected a random sample of 500,000
URLs that we extracted from the unsolicited emails and ran
them through VT. This sample size was chosen based on the
scanning quota that was available to us.

Only 49.65% of the scanned URLs had ever been scanned
by VT. This implies that more than 50% of the URLs that
we extracted from the unsolicited emails were never scanned
by VT publicly. We retrieved the scanning results for the
remaining set of URLs. VT offers four categories of outcomes
for scanned URLs: harmless, malicious, suspicious, and unde-
tected. On average, 74.94 (83.34%) AV engines flagged these
URLS as harmless at the very first scan, while only 5.2 (5.78%)
AV engines labeled them as malicious. In fact, 24.98% of all
the URLSs that were scanned were never labeled by any engine
as malicious. Even though a portion of these could be deemed
as falsely reported, given the high level of confidence of these

reporters (e.g., national CERTs, CSIRTs, etc.), this highlights
the increased coverage that the extracted URLs provide.
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Fig. 8: Number of URLs flagged as malicious

Figure 8 shows that there is a low rate of overlap between
the extracted URLs and those flagged as harmful by VT,
ranging from 0.6% to 2.2%. For all categories, the ratio of
overlap is less than 3%, indicating that the majority of the
URLs are not harmful according to VT. However, there are
some differences between the categories. The adult category
has the highest ratio of overlap, with 2.17% of the extracted
URLs flagged as harmful by VT. In contrast, the scam category
has the lowest ratio of overlap, with just 0.6% of the extracted
URLs flagged as harmful by VT. The results also suggest that
phishing and spam URLs have a low ratio of overlap with VT.
Both categories have a ratio of overlap between 0.77-1.11%.

B. Comparison with RBLs

We collected six datasets for comparative evaluation from
different RBL providers: OpenPhish [39], PhishTank [40],
Phishstats [41], APWG [8], WMC PhishFeed [42], and URL-
Haus [43]. These blocklists contain URLSs that are identified
as being associated with attacks, and are used by organizations
and individuals to protect against such attacks [44], [45],
[46]. In this context, it is important to evaluate the overlap
between the URLSs extracted from unsolicited emails, and those
included in RBLs. These RBLs were collected from 2020 to
2023 so for a fair comparison we also restricted the URLSs
extracted from unsolicited emails to this period.

TABLE VI: Comparison of common URLs between the ex-
tracted URLs and RBLs.

Common URLs

Number  Percentage (%)
Phishstats 25,946 3.93
APWG 19,870 3.01
WMC PhishFeed 16,764 2.54
Phishtank 16,033 243
Openphish 11,945 1.81
URLhaus 2,275 0.34

When comparing the URLs from RBLs to those extracted
from unsolicited emails, we discover that there is only a
7.71% overlap, which amounts to 51,163 URLs in common.
The extent of this overlap varies depending on the specific
RBL (see Table VI). We find that Phishstats has the highest



number of common URLs, with 25,946 URLs. APWG has
19,870 unique common URLs, while WMC PhishFeed and
PhishTank have 16,764 and 16,033 unique common URLs,
respectively. OpenPhish has 11,945 common phishing URLs,
while URLHaus has only 2,275 common phishing URLs.

APWG URLHaus WMCPhishFeed
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Fig. 9: Histogram of the detection latency per RBL.(red for
negative latency, blue for positive latency)

Besides the number of common URLs, we also analyzed the
difference in days between the moment a URL is detected in
an unsolicited email and the moment it is included in an RBL.
19,956 URLs were reported faster as seen in unsolicited emails
that they were included in any RBLs. As shown in Figure 9,
only a small portion of common URLs (22.34%) appeared
before in one of the six RBLs than they were reported as
unsolicited email. On average, it took 3.5 days for a URL to
be added to an RBL after being having appeared already in
an unsolicited email. In most cases, the URL is added to the
block list on the same day or soon after being included in the
unsolicited email.

VIII. LIMITATIONS

While the use of machine learning to classify spam, phish-
ing, and scam emails demonstrated promising results, our
research has some limitations. Firstly, although the LSTM and
TF-IDF classifiers showed high performance, none of the tech-
niques reached 100% classification accuracy. This highlights
the complexity of distinguishing between the different types
of unsolicited emails and underscores the need for further
research in this field. Another limitation is that we only trained
the classifiers with one dataset, and, even though it is currently
the largest collection of unsolicited emails, this dataset may
not encompass all the characteristics of future unsolicited
emails. Hence, the classifiers’ performance may differ when
applied to different types of emails. Moreover, we assumed
that all unsolicited emails reported by the members of APWG
contain some kind of threat. Finally, the study did not assess
the classifiers’ vulnerability to adversarial machine learning
attacks. Adversarial attacks aim to manipulate the classifiers’
behavior by modifying the input data, and they are becoming
increasingly sophisticated. Therefore, it is essential to evaluate
the classifiers’ resilience against such attacks and develop
countermeasures to prevent them.

IX. DISCUSSION

Our analysis of one of the largest datasets of unsolicited
emails reveals a crucial finding: intrinsic heterogeneity exists
in the various types of unsolicited emails. Identifying and
classifying these emails accurately is essential to take effective
countermeasures. By doing so, researchers and security profes-
sionals can gain valuable insights into the tactics, techniques,
and procedures used by attackers. This understanding of the
evolving threat landscape can lead to the development of more
effective defense mechanisms. For example, unsolicited emails
containing phishing content can serve as an ideal training
source for machine learning models to enhance their detec-
tion capabilities. By identifying trends in unsolicited emails
with malicious attachments or links, we can design targeted
awareness campaigns about the risks and best practices for
safe email usage.

One of the dominant types of unsolicited emails is spam.
These emails can contain a wide range of content, including
unwanted commercial offers and misinformation. It is crucial
to identify these emails as spam because the threat indicator
in these cases is rooted in the email address. Identifying and
blocking these emails can help prevent further disruption.
Managing spam emails focuses on reducing inbox clutter and
minimizing productivity impact through the use of filters and
user guidelines. Moreover, unsolicited email classification can
also help in identifying emerging threats. For example, the
rise of cryptocurrency scams and the use of social engineering
techniques such as sextortion have become prevalent in recent
years. By tracking the volume and content of unsolicited
emails related to these emerging threats, security professionals
can identify patterns and anticipate new tactics used by attack-
ers. Our analysis has also shown that a significant number of
unsolicited emails contain adult content. Although these emails
could also be seen as spam, given their volume and content,
they indicate a different type of threat. In such cases, the TIs
extracted from those emails deserve a different consideration
than TIs from spam, phishing, and scam emails. For example,
the presence of BTC addresses in unsolicited emails can serve
as an early indicator of the type of threat.

It is also important to note that the volume of unsolicited
emails has been increasing over time. This increase is not
necessarily driven by an increasing threat landscape, but also
by the number of active reporters. Being able to set apart the
different types of unsolicited emails also helps to gain a deeper
understanding of the current threat landscape.

X. CONCLUSIONS

In this paper, we have analyzed a staggering 10.8 million
unsolicited emails and found that four categories dominate the
space: spam, phishing, scam, and adult content. Our longitu-
dinal analysis reveals a consistent increase in the number of
reported unsolicited emails over the past five years; however,
not all types of unsolicited emails have seen the same rate of
growth. This analysis also served to characterize the activity of
reporters as well as the characteristics of the reported emails.
Despite fluctuations in the overall volume of unsolicited emails



and reporters, the prevalence of phishing and spam as the
primary categories of such emails has remained constant.
We leveraged this dataset containing over 50 languages to
train a neural network, achieving high classification accuracy
of over 87.4% independently of the language used. This is
a significant improvement over publicly available datasets,
which are typically limited to English only, making them
challenging to use for email classification in other languages.
The analysis of the extracted TIs from the emails allowed
us to contextualize the type of threat for each TI. Our analysis
of the extracted URLs revealed that more than 95% of these
URLs were not previously flagged as malicious by any of the
90 AV engines used by VirusTotal, highlighting the increased
coverage that our method provides. Furthermore, our method
revealed a strikingly low overlap with RBLs, with some having
as few as 0.34% in common. Finally, our findings demonstrate
that our method can detect malicious URLs faster than they
are added to any RBL, with almost 20,000 URLs reported
within unsolicited emails before being added to any blocklist.
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