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Updates on two community resources — please use them!

PEERING BGP testbed Residential traffic traces
e Exchange BGP routes and traffic with thousands e Packet traces from ~1000 residences
of ASes at locations around the world e Plan to scale to 8000 units, 24x7
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Availability and performance determined by paths:

Path from client to cloud ingress
11112222
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... the same old approaches for decades:
1111 2255 1. Client learns service IP address from DNS
2. Either:
a. Many sites use same address (anycast),
and Internet BGP routing picks both site and route to it

b. Each site uses its own address (unicast),
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Availability and performance determined by paths:

Path from client to cloud ingress

... the same old approaches for decades:
11112222 1111 2233 1111 2244 1.1.1.1 2255 1.

2.

Client learns service IP address from DNS
Either:
a. Many sites uses same address (anycast),
and Internet BGP routing picks both site and route to it
b. Each site uses its own address (unicast),
DNS picks a site, and BGP picks a route to it

Challenging to understand:

1.

2.

Depends on BGP routing policy and DNS caching policy

outside cloud control

Difficult to conduct research in academia:

a. Manipulate routing (at cloud scale)

b. Observe ingress routing decisions and DNS caching
behavior (at scale)
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Goals
e Control: route client to best-performing site
e Availability: fast failover to other sites

Current Techniques
e Unicast with DNS redirection
e Anycast

Availability?

e Unicast failover (and hence availability)
depends on DNS caching behavior,
which depends on traffic patterns, OS
behavior, and application behavior
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Residential traces to understand real-world behavior

Columbia operates a residential ISP
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Residential traces to understand real-world behavior
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Residential traces to understand real-world behavior

B VI e e Columbia operates a residential ISP
¢ o Largest landlord in NYC

o e
: / o 8000 faculty, postdocs, and grad students (and their families)
y, in off-campus apartments (not undergrad dorms)

o  All on Columbia network...(except Ethan’s building)

e Traffic mirrored to anonymization and collection pipeline
e Provides view of Internet activity typically invisible to academia
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Residential traces to understand real-world behavior
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e e Columbia operates a residential ISP
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Residential traces to understand real-world behavior
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How quickly can DNS fail clients over to a new site?
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CCDF of Flows that

Unicast lacks availability in site failure scenarios
Trace from 1000 NYC apartments

1.0 e DNS controls client-to-site mapping
0.81

06 e DNS update is slow due to caching,
0.41 which limits availability.

0.2 o Lower DNS TTL increases

0.0 application latency.

Start After Expiration

1 second 1 min 1 hour . .
Time Difference Between Flow Starting Time and DNS Record Expiration o TTL s often violated. ]
13% of flows start after TTL expired

Of those, 50% start > 1 min. later
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Anycast supports fast failover for high availability

1.1.1.0/24 1.1.1.0/24 1.1.1.0/24 1.1.1.0/24

: ===
S |
Chicago  New York
~——

17



Anycast supports fast failover for high availability

=
S |
New York

1.1.1.0/24

Chicago

1.1.1.0/24 1.1.1.0/24 1.1.1.0/24

17



Anycast supports fast failover for high availability

1.1.1.0/24 1.1.1.0/24 1.1.1.0/24 1.1.1.0/24

: =
S |
Chicago  New York
~——

17



Anycast supports fast failover for high availability

&
=
New York

Chicago

1.1.1.0/24 1.1.1.0/24 1.1.1.0/24

17



Anycast supports fast failover for high availability

1.1.1.0/24

1.1.1.0/24

Chicago

1.1.1.0/24

gE
EEEE g
New York

17



Anycast supports fast failover for high availability

Chicago
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Routes to other sites are
learned by networks and
can attract traffic.
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Measuring anycast failover
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Evaluation of failover time
o Emulate a cloud provider / CDN
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PEERING sites - Deployed on Vultr data centers
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PEERING sites - Announce from Cloudflare PoPs
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PEERING site capabilities

# sites
universities 10
IXPs 5
Vultr 32

Cloudflare 335

# neighbor exchange

ASes
~10

~1500
~6000

~13,000

traffic

Y

Y

control BGP
announcements

Y

Y

select outgoing
routes

Y

Y



Data collection

e Looking Glass on PEERING routers so experimenters can view routes
o Especially useful for debugging your own experiments to check your own experiments

e Traceroutes:
o 48 teams of 400 RIPE Atlas probes run traceroute to PEERING prefixes every 20 minutes
o Can configure exact source probes and destination PEERING prefixes/addresses

e Route monitoring

o  Monitor route visibility of PEERING announcements from RIPE RIS
o https://github.com/PEERINGTestbed/peeringmon_exporter

e TODO: Feed routes to RouteViews/RIS/Gl

o Announcements that experiments make
o Routes we learn from the Internet
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o Fail one site at atime
o Ping target “clients” to measure failover
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Measuring anycast failover
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Ping reply Evaluation of failover time

dst=1.1.1.1 o Emulate a cloud provider / CDN

\/ o Fail one site at a time
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Measuring anycast failover
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Ping reply
dst=1.14.1

Evaluation of failover time
o Emulate a cloud provider / CDN
o Fail one site at atime
o Ping target “clients” to measure failover

1.1.1.0/24 1.1.1.0/24

e \Vultr PoPs
*  Ping Targets
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Measuring anycast failover

Chicago  New York

Ping request
src=1.1.1.1
T.T.T.072&

1.1.1.0/24

Evaluation of failover time
o Emulate a cloud provider / CDN
o Fail one site at atime
o Ping target “clients” to measure failover
o Median failover < 2 seconds

Technique | Control Availability
5;?%? 'ﬁ'y1 1 Unicast High Low
Anycast Low
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Measuring anycast failover

New York

Evaluation of failover time
o Emulate a cloud provider / CDN

Ping request

src=1.1.1.1 o Fail one site at a time
1.1.1.0/24 TT.T.0Z4 o Ping target “clients” to measure failover
o Median failover < 2 seconds
Technique | Control Availability
Pi | . :
d;?irf’%j Unicast High Low
Anycast Low High
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PEERING BGP testbed Residential traffic traces
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PEERING BGP testbed Residential traffic traces
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e We approve and allocate you prefixes
(or bring your own)
e Set up BGP sessions with our routers to:
e Make announcements
e Receive and select routes
e Exchange traffic
e Filters restrict announcements to
approved capabilities for experiment
e Popular use cases include RPKI measurements:
ImpROV: Measurement and Practical Mitigation of
Collateral Damage of RPKI Route Origin Validation.
Weitong Li, Yuze Li, Taejoong Chung.
USENIX Security Symposium 2025
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These are community resources — please use them!

PEERING BGP testbed

Submit proposal at peering.ee.columbia.edu
We approve and allocate you prefixes
(or bring your own)
Set up BGP sessions with our routers to:
e Make announcements
e Receive and select routes
e Exchange traffic
Filters restrict announcements to
approved capabilities for experiment
Popular use cases include RPKI measurements:
ImpROV: Measurement and Practical Mitigation of

Collateral Damage of RPKI Route Origin Validation.

Weitong Li, Yuze Li, Taejoong Chung.
USENIX Security Symposium 2025

Residential traffic traces
e Collecting since 2023 and plan to continue
indefinitely
e Currently ~1000 units, 4 hrs / day
e Plan to scale to 8000 units, 24x7
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These are community resources — please use them!

PEERING BGP testbed

Submit proposal at peering.ee.columbia.edu
We approve and allocate you prefixes
(or bring your own)
Set up BGP sessions with our routers to:
e Make announcements
e Receive and select routes
e Exchange traffic
Filters restrict announcements to
approved capabilities for experiment
Popular use cases include RPKI measurements:
ImpROV: Measurement and Practical Mitigation of

Collateral Damage of RPKI Route Origin Validation.

Weitong Li, Yuze Li, Taejoong Chung.
USENIX Security Symposium 2025

Residential traffic traces

Collecting since 2023 and plan to continue
indefinitely
Currently ~1000 units, 4 hrs / day
e Plan to scale to 8000 units, 24x7
We can share the data
Submit IRB approval/exemption
including description of data needed
Data aggregated and anonymized as
appropriate
e Flows or packets
e Individual (anonymized) units
(rotating anonymization key),
or truncated by prefix
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Fundamental tradeoffs in cloud/CDN ingress routing

Technique | Control Availability
Unicast High Low
Anycast Low High

Existing techniques compromise control or availability
e Announcing failed site’s prefix from other sites upon failure (reactive anycast)
runs risk of turning a local failure into a widespread one, compromising safety
e Tradeoffs are fundamental:
any technique relying on DNS + BGP for content redirection
must compromise at least one of control, availability, or safety
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e Existing techniques compromise
control or availability.

Technique | Control Availability Safety
Unicast High Low High
Anycast Low High High
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e Existing techniques compromise
control or availability.

e \We developed three new techniques.

anycast

unicast
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e Existing techniques compromise
control or availability.

e \We developed three new techniques.

Control Availability Safety
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e Existing techniques compromise
control or availability.

e \We developed three new techniques.

e For each pair of goals, a new technique
optimizes them while achieving better
trade-offs than existing techniques.
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e Existing techniques compromise
control or availability.

e \We developed three new techniques.

e For each pair of goals, a new technique
optimizes them while achieving better
trade-offs than existing techniques.
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New approaches for cloud/CDN ingress routing
enable new tradeoffs

e Existing techniques compromise control or availability
e Announcing failed site’s prefix from other sites upon failure (reactive anycast)
runs risk of turning a local failure into a widespread one, compromising safety
e Tradeoffs are fundamental:
any technique relying on DNS + BGP for content redirection
must compromise at least one of control, availability, or safety

e For each pair of goals, one of our new technique optimizes them while achieving
better trade-offs than existing techniques.
Initial techniques at IMC 2022 (Best Short Paper). Improvements under submission
e Or: Use special deployments to sidestep DNS + BGP
to optimize all 3 goals, without being universal
PAINTER, SIGCOMM 2023. SCULPTOR, under submission.
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