
Internet Yellow Pages (IYP) Tutorial
Give your feedback! This tutorial is in a Google doc so that you can help us improve it.
Don’t hesitate to add comments to this document, later we’ll integrate the changes and move
the content to a public website.

This tutorial covers the following topics:

● Get Started with IYP: the basics of the Internet Yellow Pages and its querying
language, Cypher.

● Example IYP queries: example queries to strengthen your understanding of IYP
data and its querying language.

● Accessing IYP from code: interact with IYP from Python.
● Hosting a local IYP instance: run your own instance of IYP locally.
● Adding data to IYP: the steps to add your own data to IYP.

For writing queries see also the IYP cheatsheet:

Disclaimer
● Data quality: IYP makes no changes to imported datasets. Users should be aware

of the original datasets’ limitations to accurately interpret results and maximize the
utility of IYP.

● Feedback: Report erroneous data found in IYP directly to the data providers, so that
the original dataset can be fixed, the changes will be reflected in following IYP
snapshots.

● Citation: If you publish work/tools based on IYP cite the original dataset used (and
the IYP paper!).

https://docs.google.com/presentation/d/1UyeSFOIXCvM7CKXclT9vxgHcJxOAFX4mGc2eVCsLkLs/edit?usp=sharing
https://www.iijlab.net/en/members/romain/pdf/romain_imc2024.bib

● Heavy duty: For large scale analysis installing a local instance of IYP is
recommended.

● Temporal analysis: IYP is not suitable for timely analysis (e.g. the infamous
event-triggered-ark-measurements hackathon project) and longitudinal analysis.

Get Started with IYP

What is IYP?
The Internet Yellow Pages (IYP) is a graph database composed of over 50 Internet
measurement datasets. IYP has been designed to facilitate the exploration and analysis of
these datasets. An overview can be found in the paper “The Wisdom of the Measurement
Crowd: Building the Internet Yellow Pages a Knowledge Graph for the Internet.”
IYP is built on Neo4j, a graph database management system, which means that data is
stored and queried through graph structures. Neo4j’s query language is called Cypher and
all programmatic interaction with IYP will require basic understanding of Cypher. In this
tutorial we provide a Cypher overview and example queries for analyzing IYP data.

Overview of IYP data
Given the diversity of datasets integrated into IYP, one of the first difficulties when working
with IYP is to get an overview of the data that is available. Then the main difficulty is to write
Cypher queries. We briefly address these with the three following sections:

● Internet Health Report (IHR) provides a high level graphical interface to the type of
queries and datasets that IYP supports.

● IYP data modeling provides an overview of the underlying data model.
● Cypher: querying IYP provides an overview of Cypher for IYP.

Internet Health Report
The easiest way to browse the IYP database is to visit the Internet Health Report website.
There you can search for an Internet resource (e.g. AS, prefix, domain name) and get IYP
data related to that resource.

1. Enter the resource into the search field in the top left corner.
2. Selecting the Routing, DNS, Peering, Registration, or Rankings tabs.

a. The time series Monitor tab is external to the IYP.

https://www.iijlab.net/en/members/romain/pdf/romain_imc2024.pdf
https://www.iijlab.net/en/members/romain/pdf/romain_imc2024.pdf
https://www.ihr.live

Figure: IYP routing data shown on IHR website

(https://www.ihr.live/en/network/AS2497?active=routing).

The above figure illustrates the ‘routing’ tab for the Internet Initiative Japan network
(AS2497). All other tabs (except the ‘monitoring’ one) are providing IYP data via different
widgets.

For each widget, you’ll find a chart, data, Cypher query, and a metadata tabs.

● The Chart tab shows a visual representation of the data.
● The Data tab gives the raw data in a table format.
● And the Cypher Query tab gives you the exact query we used to pull the data

from IYP. You can reuse that to query directly the IYP database or craft your
own queries. More on how to write your own query below.

● The Metadata tab gives links to the original datasets and the freshness of the data.

IYP data modelling
Under the hood IYP is stored in a graph database where nodes represent mostly Internet
resources and links give relationships between them. To do that we had to model all
datasets integrated to IYP as graphs. For some datasets it makes a lot of sense, for some it

https://www.ihr.live/en/network/AS2497?active=routing

may seem counter-intuitive. In any cases IYP’s github repository (the iyp/crawler folder)
contains a readme for each dataset where the modelling is documented.

Let’s see a simple example. The below figure is an extract of BGP data showing the two
ASes connected to the University of Tokyo (AS2501):

Figure: Networks peering with AS2501.

This is very similar to AS graphs we usually draw on a whiteboard. In addition the number
displayed in each node shows the ASN which is actually a property set on the node.

For a counter-intuitive example see the graph below. These are the names associated with
AS2501:

Figure: Names for AS2501.

Although we could have set a property ‘name’ to our AS nodes, we wouldn’t know which
value to use for this property. Different datasets give us different AS names. So instead of a
property, a name is a unique entity that can be linked to other entities.

The previous example also illustrates two different types of nodes, one `AS` node and three
`Name` nodes. In IYP every node and every relationship are typed. The list of node and
relationship types is available on GitHub and grows as IYP integrates more datasets.

https://github.com/InternetHealthReport/internet-yellow-pages/tree/main/iyp/crawlers
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/node-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/relationship-types.md

Nodes and links have properties. For example the `asn` property permits to uniquely identify
the AS represented by an AS node. In the IYP console (introduced below) click on a link or
node to see all its properties.
IYP uses properties for three different purposes:

● Identification: Some properties are immutable values that enable the user to select
a specific thing in the database. For example, all AS nodes have the property `asn`
that permits distinguishing the different ASes. Country nodes have the property
`country_code`, HostName nodes have the property `name`, etc. These properties
are documented in the list of node and relationship types.

● Non-modelled data: Some datasets provide a lot of detailed information, more than
what IYP is modelling. In this case IYP keeps non-modelled data in the form of
properties. For example, PeeringDB provides IXP member lists. This is modelled by
connecting AS nodes to IXP nodes with the `MEMBER_OF` relationship. PeeringDB
also provides the general peering policy of these ASes, which is not modelled in IYP
but available via the property `policy_general` of the relationships. These properties
are generally not documented in IYP and require a good understanding of the original
dataset.

● Reference: Every relationship in IYP contains metadata referring to the origin of the
data:

○ The `reference_org` property refers to the organization providing the original
data.

○ `reference_time_fetch` is the date at which the data was imported.
○ `reference_time_modification` is the time at which the data was produced.
○ `reference_url_data` is the URL of the original dataset.
○ `reference_url_info` is the URL of the documentation of the original dataset.
○ `reference_name` is unique per dataset and is composed of the organization

name and dataset name (e.g. `caida.as_relationships_v4`). This is particularly
useful to filter per datasets.

Documentation
The IYP documentation contains complementary information that is essential for writing
queries. There you will find:

● the different types of nodes and relationships available,
● the list of all integrated datasets,
● how each dataset is modelled (see README.md files in these folders)
● see also the IYP cheatsheet

Cypher: Querying IYP
The main advantage of IYP is the possibility to query all available datasets at once. The
learning curve is quite steep, though. It requires you to be familiar with how datasets are
modelled in IYP and the Cypher querying language. We’ll cover the basics here.

IYP console
The easiest way to execute IYP queries is to use IYP’s public instance:

https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/node-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/relationship-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/tree/main/documentation
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/node-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/relationship-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/data-sources.md
https://github.com/InternetHealthReport/internet-yellow-pages/tree/main/iyp/crawlers
https://docs.google.com/presentation/d/1UyeSFOIXCvM7CKXclT9vxgHcJxOAFX4mGc2eVCsLkLs/edit?usp=sharing

1. Go to the IYP console.
2. Click on the ‘Connect’ button (no username or password required).
3. And before you continue we recommend you to turn off the `Connect result nodes`

option in the settings available from the cogwheel at bottom left.

Figure: There is no username/password required to connect to the IYP console. Make sure

you uncheck the `Connect result nodes` option in the settings.

The IYP console provides a summary of the database which is quite handy when writing
queries. At the top left there is a database icon that shows all types of nodes and
relationships available in the database. Clicking on a node or relationship type displays
examples.

https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443
https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443
https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443

Figure: The top left tab in the IYP console displays all types of nodes and relationships

available in the database. Click on one of those to see examples.

Hello world
You are ready for your first query. Copy/paste the below query in the top input box (next to
`neo4j$`) and click the play button.

```cypher 
MATCH p = (:AS)--(n:Name) WHERE n.name CONTAINS 'Hello' RETURN p 

``` 

You should see something similar to this (click on the node labels at the top right corner to
change the node’s color and select the property which should be used as the caption of the
node):

https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443

Figure: Results for the Hello World query.

This graph shows ASes that contain the word ‘Hello’ in their name. If you see a lot more links
that means you haven’t un-checked the `Connect result nodes` option in the settings (please
uncheck that option!).

Cypher 101
Cypher is the main language used to query IYP. It has some similarities with SQL but it is
designed to query graph databases. That means instead of looking for rows in tables, a
Cypher query describes patterns to find in a graph.

The pattern is given in an ASCII art representation where nodes are depicted by a pair of
parentheses, `()`, and relationships are depicted with two dashes `--` sometimes including
more information in square brackets `-[]-`.

Figure: Cypher’s ASCII representation of graphs.

The simplest pattern we can look for is a node. The below query finds the AS node with ASN
2497 (try it in the IYP console!):

```cypher 
MATCH (iij:AS) 

WHERE iij.asn = 2497 

RETURN iij 

```  

Now let’s see how the query works:

- The `MATCH` clause defines the pattern to find in the graph.
- `(iij:AS)` is the pattern we are looking for. The parenthesis show that it is a node, `iij`

is an arbitrary variable to refer to that node later in the query, and the type of node is
given after the colon.

- The WHERE clause describes conditions for nodes or relationships that match the
pattern. Here we specify that the node called iij should have a property `asn` that
equals 2497.

- The `RETURN` clause describes the data we want to extract from the found patterns.
Here we return `iij` the node that satisfies both the `MATCH` and `WHERE` clauses.

Another way to specify the condition for the node property is to set it within the search
pattern. For example the following query returns exactly the same results as the above one:


```cypher 
MATCH (iij:AS {asn: 2497}) 

RETURN iij 

```  
This is a more compact form, but really it doesn’t make a difference for the final result.

Slightly more complicated, the below query finds which IXPs AS2497 is a member of:

```cypher 
MATCH p = (iij:AS)-[:MEMBER_OF]-(:IXP)  
WHERE iij.asn = 2497  
RETURN p 

``` 

Thus (iij:AS)-[:MEMBER_OF]-(:IXP) describes a path that starts from a node we call iij that
connects to another node typed `IXP`.
Similar to the node type, the type of a relationship is given after the colon, for example
`-[:MEMBER_OF]-` is a relationship of type “member of”.

This query is also using a handy trick. Instead of assigning a variable for every node and
relationship in the query, it uses one variable `p` that contains the whole pattern and
specifies only `p` in the RETURN clause.

If needed we can assign variables to relationships and filter on their properties. For example,
this query finds which IXPs AS2497 is a member of but not from PeeringDB data (the
operator for inequality is `<>`):

```cypher 
MATCH p = (iij:AS)-[mem:MEMBER_OF]-(:IXP) 

WHERE iij.asn = 2497 AND mem.reference_org <> 'PeeringDB'  

RETURN p 

``` 

More Cypher
We don’t have the intention to cover the whole Cypher language in this tutorial. Cypher
contains all operators you may expect from a modern querying language, including
aggregating functions, OPTIONAL MATCH for patterns with optional parts, and many other
clauses.

The Cypher tutorial and Cypher documentation are the more comprehensive places you
should refer to when crafting your queries.

Also, in the IYP console the `:help` command provides documentation to any Cypher clause.
Try `:help MATCH` or `:help cypher` in the IYP console.

https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
https://neo4j.com/docs/cypher-manual/current/clauses/optional-match/
https://neo4j.com/docs/cypher-manual/current/clauses/
https://neo4j.com/docs/getting-started/appendix/tutorials/guide-cypher-basics/
https://neo4j.com/docs/cypher-manual/current/introduction/

More Cypher Hints
● Double click on a node in the UI to see its neighbors and links. The number of

displayed nodes is limited, you can increase this limit in the settings (bottom left cog
wheel).

● Add `LIMIT 10` at the end of your queries when experimenting.
● Add comments in your queries: Single line comments starting with `//` or multiple line

comments using `/*` `*/`.

Example IYP queries
Writing IYP queries from scratch is daunting. But once you can read queries, you can then
easily modify existing queries. In the following, we conduct small studies using IYP and
provide all corresponding queries. This should give you enough material to start writing your
own queries. Execute these examples in the IYP console, then try tuning or combining some
of the queries. Also remember to click on the database icon (top left corner in the IYP
console) to see all node and relationship types and get examples by clicking on any of those.

AS and IP Prefixes
First, we will learn about queries for finding specific prefixes and ASes. We also use these
examples to explain how to use the IYP console interface and provide some tricks for
making your own queries.

Find prefixes originated by an AS
We start by looking at the prefixes originated by a certain AS which is represented in IYP by
the `ORIGINATE` relationship between `AS` and `Prefix` nodes.

Here is the query to find prefixes originated by AS2497:

```cypher 
MATCH p = (:AS {asn:2497})-[r:ORIGINATE]-(:Prefix)  
RETURN p 
``` 

Copy/paste this query into the IYP Console. You should obtain a busy graph like this:

https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443

Now let’s try another query focusing only on the IPv6 prefixes. By clicking on any of the
Prefix nodes you will see in the right side panel the properties of the node (if you don’t see
the panel then click the ‘<’ icon), something like this:

The `af` property (i.e. Address Family) tells us if the prefix is for IPv4 or IPv6. So to find all
IPv6 prefixes originated by AS2497 we can filter prefixes using the `af` property:

```cypher 
MATCH p = (:AS {asn:2497})-[r:ORIGINATE]-(:Prefix {af: 6})  
RETURN p 



``` 
Copy/paste this query into the IYP Console, you should obtain another cute graph. You may
wonder why there are multiple links between the same pair of nodes. This is because
multiple datasets provide us with this same information. Clicking on the links you can see
that the `reference_org` property is different. Some are from BGPKIT, some are from Packet
Clearing House and some are from IHR. IYP gives you the possibility to filter per dataset. If
you want to query only data from BGPKIT, you can filter on this property (or even better on
the `reference_name` property which is a unique name for the dataset):

```cypher 
MATCH p = (:AS {asn:2497})-[r:ORIGINATE]-(:Prefix {af: 6}) 
WHERE r.reference_name = 'bgpkit.pfx2asn' 
RETURN p 
``` 

For analysis we need the actual list of prefixes (not a cute graph). To do that we can ask
Cypher to return property values instead of nodes and relationships. The following query
returns a list of IPv6 prefixes originated by AS2497:

```cypher 
MATCH (:AS {asn:2497})-[r:ORIGINATE]-(pfx:Prefix {af: 6}) 
RETURN DISTINCT pfx.prefix 
``` 
Note the use of the keyword `DISTINCT` in the RETURN statement, this ensures that we
retrieve only unique rows. Since we have multiple links that match this pattern the query
would have returned multiple times the same prefix (try the query without `DISTINCT`).

Executing the above query you should see a table listing all prefixes:

https://iyp.iijlab.net/iyp/browser/?dbms=iyp-bolt.iijlab.net:443

You can download the data in CSV or JSON format via the download icon at the top right
corner.

Finally, we can also search for more complex patterns in the graph. The following query
looks for prefixes that are originated by two different origin ASes. The return values are the
prefix, the two origin ASes, and the `count` values provided by BGPKIT (the number of RIS
and RouteViews peers that see the prefix/origin pair).

```cypher 
MATCH (a:AS)-[ra:ORIGINATE {reference_org: 
'BGPKIT'}]-(pfx:Prefix)-[rb:ORIGINATE {reference_org: 
'BGPKIT'}]-(b:AS) 
WHERE a <> b 
RETURN DISTINCT pfx.prefix, a.asn, b.asn, ra.count, rb.count 
LIMIT 100 
``` 

As we write more complex Cypher queries the searched pattern may become very long and
hard to read. In this case we can also use multiple `MATCH` clauses. The following query
gives the exact same results as the previous one:
```cypher 
MATCH (a:AS)-[ra:ORIGINATE {reference_org: 'BGPKIT'}]-(pfx:Prefix) 



MATCH (pfx)-[rb:ORIGINATE {reference_org: 'BGPKIT'}]-(b:AS) 
WHERE a<>b 
RETURN DISTINCT pfx.prefix, a.asn, b.asn, ra.count, rb.count 
LIMIT 100 
``` 


Exercises
1. Write a query that fetches only IPv4 prefixes.
2. Write a query that fetches only /24 prefixes.
3. `ORIGINATE` is not the only type of relationship between ASes and Prefixes. For

RPKI we have the ‘ROUTE_ORIGIN_AUTHORIZATION’ relationship between AS
and Prefix nodes.
Find prefixes that are announced by one AS and that have a ROA for another AS.

IP addresses and HostNames
Now we’ll see how to query more complex patterns and introduce other types of nodes and
relationships: `IP`, `HostName`, `PART_OF`, `RESOLVES_TO`. We’ll also learn about the
Cypher Aggregating function `collect()`

Finding popular IPs in a prefix
Some of the datasets integrated into IYP provide IP addresses and hostnames. A good
example of that are the top popular websites and DNS nameservers provided by Tranco and
OpenINTEL.

The query to fetch any hostnames (from any of the integrated dataset) hosted by AS2497 is:

```cypher 
MATCH (:AS 
{asn:2497})-[:ORIGINATE]-(pfx:Prefix)-[:PART_OF]-(:IP)-[:RESOLVES_TO]-(h:Ho
stName) 
RETURN pfx.prefix, collect(DISTINCT h.name) 
``` 

Note the usage of `collect` in the `RETURN` clause. This function is used to compile a list of
all `HostName` names per prefix. If you use aggregation functions in the return clause, it
implies (in SQL terms) a “GROUP BY” on all returned elements that are not aggregated (like
pfx.prefix in this example).

However, the above query is returning only prefixes that are related to hostnames. It won’t
return an empty hostname list. To list all prefixes and their corresponding hostnames (if they
have any) we should break down the previous query into two parts and make one of the
parts optional. Optional parts of a pattern are preceded by the keyword `OPTIONAL`, hence
the previous query becomes:

https://neo4j.com/docs/cypher-manual/current/functions/aggregating/


```cypher 
MATCH (:AS {asn:2497})-[:ORIGINATE]-(pfx:Prefix) 
OPTIONAL MATCH (pfx)-[:PART_OF]-(:IP)-[:RESOLVES_TO]-(h:HostName) 
RETURN pfx.prefix, collect(DISTINCT h.name) 
``` 

Finding DNS authoritative nameservers and corresponding
domains
Looking at the results of the above query you may see a lot of hostnames that start with ‘ns’.
Those are typically DNS nameservers. In IYP a node can have multiple types. The DNS
nameservers are both `HostName` and `AuthoritativeNameServer`. Hence, the following
query finds all authoritative nameservers hosted by AS2497 and the number of domains they
manage.

```cypher 
MATCH (:AS {asn:2497})-[:ORIGINATE]-(pfx:Prefix) 
MATCH 
(pfx)-[:PART_OF]-(:IP)-[:RESOLVES_TO]-(ns:AuthoritativeNameServer) 
OPTIONAL MATCH (dn:DomainName)-[:MANAGED_BY]-(ns) 
RETURN ns.name, count(DISTINCT dn.name) AS nb_domains, 
collect(DISTINCT dn.name) 
ORDER BY nb_domains DESC 
``` 

Note the use of:

● the `count` function (similar to SQL) to count the number of domain names,
● the `AS` keyword to name a result column,
● the `ORDER BY` and `DESC` keywords to sort the results (similar to SQL).

More examples
IYP integrates a lot of different datasets, more that we can cover in this tutorial. To end this
part we provide a list of small queries for diverse datasets available in IYP to help you start
writing your own queries.

IXPs and their colocation facilities:
```cypher 
MATCH p=(:IXP)-[r:LOCATED_IN]-(:Facility)-[:COUNTRY]-(:Country)  
RETURN p LIMIT 25 
```  

Peering LANs of IXPs:
```cypher 
MATCH p = (pfx:Prefix)-[:MANAGED_BY]-(:IXP) 



RETURN p LIMIT 50 
``` 

The “best” name for AS2497:
```cypher 
MATCH (a:AS {asn:2497}) 
OPTIONAL MATCH (a)-[:NAME {reference_org: 'PeeringDB'}]->(n1:Name) 
OPTIONAL MATCH (a)-[:NAME {reference_org: 'BGP.Tools'}]->(n2:Name) 
OPTIONAL MATCH (a)-[:NAME {reference_org: 'RIPE NCC'}]->(n3:Name) 
RETURN a.asn, coalesce(n1.name, n2.name, n3.name) AS name 
``` 

RPKI ROAs for prefixes not seen in BGP:
```cypher 
MATCH (roa_as:AS)-[:ROUTE_ORIGIN_AUTHORIZATION]-(pfx:Prefix) 
WHERE NOT (pfx)-[:ORIGINATE]-(:AS) 
RETURN pfx.prefix, roa_as.asn 
``` 

RPKI invalid prefixes (all possible types: RPKI Valid / RPKI Invalid / RPKI NotFound):
```cypher 
MATCH (pfx:Prefix)-[:CATEGORIZED]-(t:Tag) 
WHERE t.label = "RPKI Invalid" 
RETURN pfx.prefix 
``` 

All the parent domain names of 'server.transfer.us-west-1.amazonaws.com':
```cypher 
MATCH p=(:DomainName {name: 
'server.transfer.us-west-1.amazonaws.com'})-[:PARENT*]->()  
RETURN p 
``` 

Top 1k domain names in Tranco:
```cypher 
MATCH (dn:DomainName)-[r:RANK]-(:Ranking) 
WHERE r.reference_name = 'tranco.top1m' AND r.rank < 1000 
RETURN dn.name 
``` 

Top 1k website from CrUX for France and the corresponding hosting ASes:
```cypher 
MATCH (h:HostName)-[r:RANK]-(:Ranking)-[:COUNTRY]-(c:Country) 
WHERE r.rank <= 1000 
  AND r.reference_name = 'google.crux_top1m_country' 
  AND c.country_code = 'FR' 



MATCH (h)-[:RESOLVES_TO {reference_org:'OpenINTEL'}]- 
  (:IP)-[:PART_OF]-(:Prefix)-[:ORIGINATE]-(net:AS) 
RETURN h.name, COLLECT(DISTINCT net.asn) 
``` 

Resources allocated to the same opaque ID (from RIR’s delegated stat files) as AS15169
(Google):
```cypher 
MATCH p = (:AS {asn:15169})-[:ASSIGNED]-(OpaqueID)-[:ASSIGNED]-() 
RETURN p 
``` 

All RIS peers providing more than 800k IPv4 prefixes (change to `route-views` to see
RouteViews’ peers):
```cypher 
MATCH p=(rc:BGPCollector)-[peer:PEERS_WITH]-(:AS) 
WHERE peer.num_v4_pfxs > 800000 and rc.project = 'riperis' 
RETURN p 
``` 

All RIPE Atlas measurements towards ‘google.com’ and participating probes:
```cypher 
MATCH msm_target = (msm:AtlasMeasurement)-[r:TARGET]-(:HostName 
{name:'google.com'}) 
OPTIONAL MATCH probes = (:AtlasProbe)-[:PART_OF]-(msm) 
RETURN msm_target, probes 
``` 

ASes classified as academic networks by BGP.Tools:
```cypher 
MATCH p=(:AS)-[r:CATEGORIZED {reference_name:'bgptools.tags'}]- 
  (:Tag {label:'Academic'}) 
RETURN p LIMIT 25 
``` 

AS population in US aggregated per AS names:
```cypher 
MATCH (eyeball:AS)-[pop:POPULATION]-(c:Country) 
WHERE c.country_code = 'US' 
// Find the name for each AS 
OPTIONAL MATCH (eyeball)-[:NAME {reference_org:'BGP.Tools'}]-(n:Name) 
// Group ASNs by name (first word of the name), list all ASNs, and the total population 
RETURN head(split(n.name,' ')), collect(eyeball.asn), sum(pop.percent) as total_pop 
ORDER BY total_pop DESC 
``` 


Other examples online
More example queries are available at the following pages:

● Understanding the Japanese Internet with the Internet Yellow Pages, APNIC blog
● IYP Gallery
● RiPKI: The Tragic Story of RPKI Deployment in the Web Ecosystem, HotNets’15

(reproduction)
● Comments on DNS Robustness, IMC’18 (reproduction)

Exercise
● Find all hostnames in IYP that ends with ‘.gov’
● Find all hostnames in IYP that ends with ‘.gov’ and resolves to IPs in RPKI NotFound

prefixes
● Which ASes host the most popular content but are not tagged as ‘Content’ by

BGP.Tools?
● Find popular domain names managed by authoritative nameservers hosted at UCSD

(AS7377) and authoritative nameservers hosted at San Diego Supercomputer Center
(AS195).

Accessing IYP from code
For a more systematic analysis you can access IYP via different programming languages.
Neo4j offers a variety of drivers, but we will only discuss the Python driver here.

Setup
First, install the driver:

```bash 
# To make the setup cleaner, you can also create a virtual 
environment and install neo4j in there 
# For Linux: 
# python3 -m venv .venv 
# source .venv/bin/activate 
# For Windows/Mac: ¯\_(ツ)_/¯ 
 
pip install neo4j 
``` 

To verify that the setup worked, you can run this simple script:

https://blog.apnic.net/2023/09/06/understanding-the-japanese-internet-with-the-internet-yellow-pages/
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/gallery.md
https://github.com/InternetHealthReport/iyp-notebooks/blob/main/hotnets15-rpki/hotnets15.ipynb
https://github.com/InternetHealthReport/iyp-notebooks/blob/main/hotnets15-rpki/hotnets15.ipynb
https://github.com/InternetHealthReport/iyp-notebooks/blob/main/imc18-dns/imc18.ipynb
https://neo4j.com/docs/bolt/current/neo4j-drivers/
https://neo4j.com/docs/python-manual/current/


```python 
from neo4j import GraphDatabase 
 
URI = 'neo4j://iyp-bolt.ihr.live:7687' 
AUTH = None 
db = GraphDatabase.driver(URI, auth=AUTH) 
 
db.verify_connectivity() 
db.close() 
``` 

If you run a local instance of IYP (described below) you will need to specify a username and
password like this:

```python 
URI = 'neo4j://localhost:7687' 
AUTH = ('neo4j', 'password') 
``` 

Simple queries from Python
There are multiple ways to query the database, but for the purpose of this tutorial, we will
stick to the simplest one: execute_query(). You can just pass the query to this function,
(almost) like you did before in the browser interface.

```python 
# Import of module and db setup excluded. 
 
records, _, _ = db.execute_query( 
    """ 
    MATCH (iij:AS)-[:MEMBER_OF]-(ix:IXP)  
    WHERE iij.asn = 2497  
    RETURN DISTINCT(ix.name) AS name 
    """ 
) 
for r in records: 
    print(r['name']) 
``` 
Note that there are some key differences in the query. Instead of specifying and returning a
path p, like we did before, we only return a single property of the resulting nodes. Otherwise,
we would retrieve the results in the form of a path, including all properties of all nodes and
relationships, which is probably not what we are interested in. In addition, we assign a name
to the result (using AS), which will be used as the key in the resulting dictionary.

https://neo4j.com/docs/api/python-driver/current/api.html#neo4j.Driver.execute_query

Executing static queries is boring, so there is also the option to use placeholders (starting
with $) in the query and pass their value via a function parameter. This example retrieves the
number of IPv4 and IPv6 prefixes that IIJ originates:

```python 
query = """ 
    MATCH (iij:AS)-[:ORIGINATE]-(pfx:Prefix)  
    WHERE iij.asn = 2497  
    AND pfx.af = $address_version 
    RETURN COUNT(DISTINCT pfx) AS num_prefixes 
""" 
records, _, _ = db.execute_query(query, address_version=4) 
# execute_query always returns a list, but we know it only has one 
entry. 
num_v4_prefixes = records[0]['num_prefixes'] 
records, _, _ = db.execute_query(query, address_version=6) 
num_v6_prefixes = records[0]['num_prefixes'] 
print(f'IIJ originates {num_v4_prefixes} IPv4 and {num_v6_prefixes} 
IPv6 prefixes.') 
``` 

Using Pandas data frames

If your results are a bit more complex and you like working with Pandas data frames, you
can use the keys returned by execute_query() to easily load the results into a data
frame. For example, to get the top 1000 ASes from AS Rank with their name as known by
RIPE and their registered country according to the NRO delegated stats:

```python 
import pandas as pd 
 
# [...] database init like above 
 
query = """ 
    MATCH (a:AS)-[r:RANK {reference_name: 
'caida.asrank'}]-(:Ranking) 
    OPTIONAL MATCH (a)-[:NAME {reference_name: 
'ripe.as_names'}]-(n:Name) 
    OPTIONAL MATCH (a)-[:COUNTRY {reference_name: 
'nro.delegated_stats'}]-(c:Country) 
    RETURN a.asn AS asn, r.rank AS as_rank, n.name AS name, 
c.country_code as country 

https://pandas.pydata.org/


    ORDER BY as_rank 
    LIMIT 1000 
""" 
 
records, _, keys = db.execute_query(query) 
df = pd.DataFrame(records, columns=keys) 
 
# Alternatively, Neo4j can directly transform the results into a 
dataframe 
# df = db.execute_query(query, 
result_transformer_=neo4j.Result.to_df) 
``` 

For querying IYP this is pretty much all you need to know. For more examples see the
Jupyter notebooks we provide as part of our paper. However, you will notice that only the
queries are more involved, the Python functions are the same.

References
- Neo4j Python driver manual
- Python driver API documentation

Hosting a local IYP instance
To perform extensive analysis or analysis including your own datasets, we recommend that
you locally host your own instance of IYP. This is also useful if you are on-the-go without a
stable Internet connectivity. Don’t worry, apart from disk space, IYP is pretty lightweight!

System requirements
- Docker + Docker Compose
- About 100GB of free disk space
- At least 2GB of RAM
- At least 1 CPU core :)

Clone the IYP repository
The first thing we have to do is to clone the IYP repository:

```bash 
git clone 
https://github.com/InternetHealthReport/internet-yellow-pages.git 
``` 

https://github.com/InternetHealthReport/iyp-notebooks
https://neo4j.com/docs/python-manual/current/
https://neo4j.com/docs/api/python-driver/current/api.html
https://www.docker.com/
https://docs.docker.com/compose/install/

Go to the directory `internet-yellow-pages`, the following steps (download database and
setup IYP) should be done from this directory.

Download a database dump
Visit the database dump repository.

Dumps are organized by year, month, and day in this format:

```text 
https://archive.ihr.live/ihr/iyp/YYYY/MM/DD/iyp-YYYY-MM-DD.dump 
``` 

For the purpose of this tutorial, we recommend the latest dump (warning: link goes to a
8.6GB file):

```text 
https://archive.ihr.live/ihr/iyp/2025/02/01/iyp-2025-02-01.dump 
``` 

Also available on CAIDA’s server:

```text 
https://www.caida.org/~ark/iyp-2025-02-01.dump 
``` 

This dump requires about 100GB of disk space once it is loaded. If this is too much for your
machine, you can also use an older dump that is missing some datasets (CAIDA AS
Relationship, Google CrUX, OONI censorship, some DNS CNAMEs), but only requires
40GB of disk space (file is 4.1GB).

```text 
https://archive.ihr.live/ihr/iyp/2024/07/22/iyp-2024-07-22.dump 
``` 

The dump file needs to be called neo4j.dump and needs to be put in a folder called dumps
(dumps/neo4j.dump).

To create the folder and download a dump with `curl`:

```bash 
mkdir dumps 
curl https://archive.ihr.live/ihr/iyp/2025/02/01/iyp-2025-02-01.dump 
-o dumps/neo4j.dump 
``` 

https://archive.ihr.live/ihr/iyp/

Set up IYP
For Mac users with ARM-based machines: You might need to edit the Docker Compose
file (docker-compose.yaml). Change the following line:
``` 
iyp_loader: 
    image: neo4j/neo4j-admin:5.21.2 
``` 
to
``` 
iyp_loader: 
    image: neo4j/neo4j-admin:5.21.2-arm 
``` 

To uncompress the dump and start the database run the following command:

```bash 
mkdir -p data 
uid="$(id -u)" gid="$(id -g)" docker compose --profile local up 
``` 

This creates a data directory containing the database, loads the database dump, and starts
the local IYP instance. This initial setup needs to be done only once but it takes some time to
completely load the database and start IYP. Please wait until IYP is fully loaded
(indicated by the message Started.).

This step won't work if the data directory already contains a database. To delete an existing
database, simply delete the contents of the data directory.

This setup keeps the database instance running in the foreground. It can be stopped with
Ctrl+C. Afterwards, you can simply start/stop IYP in the background
to use it.

Start/Stop IYP
To start the database, run the following command:

```bash 
docker start iyp 
``` 
To stop the database, run the following command:

``` bash 
docker stop iyp 
``` 


Adding data to IYP
Before you start hacking away, the first, and very important, step is to model your data as a
graph. Take a look at the existing node and relationship types and see if and where your
data could attach to the existing graph and if you can reuse existing relationship types. Also
refer back to the IYP data modeling section. If you need help, feel free to start a discussion
on GitHub.

Once you have modeled your data, you can start writing a crawler. The main tasks of a
crawler are to fetch data, parse it, model it with IYP ontology, and push it to the IYP
database. Most of these tasks are assisted by the IYP python library (described next).

IYP code structure
The repository and code is structured like this:
``` 
internet-yellow-pages/ 
├─ iyp/ 
│  ├─ __init__.py <- contains IYP module 
│  ├─ crawlers/ 
│  │  ├─ org/ <- name of the organization 
│  │  │  ├─ README.md <- README describing datasets and modelling 
│  │  │  ├─ crawler1.py <- one crawler per dataset 
│  │  │  ├─ crawler2.py 
│  ├─ post/ <- for post-processing scripts 
``` 
The canonical way to execute a crawler is:

```bash 
python3 -m iyp.crawlers.org.crawler1 
``` 

Writing a IYP crawler
A full explanation of how to write a crawler from scratch is outside the scope of this tutorial.
To get you started, we point you to the existing documentation, the example crawler that you
can use as a template, and the best practices for writing crawlers. You can also look at other
existing crawlers and of course always contact us for help.

Making data publicly available
If you want to add private data to your own instance, feel free to do so. However, we
welcome crawler contributions that add data to IYP!

https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/node-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/relationship-types.md
https://github.com/InternetHealthReport/internet-yellow-pages/discussions
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/writing-a-crawler.md
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/iyp/crawlers/example/crawler.py
https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/crawler-best-practices.md
https://github.com/InternetHealthReport/internet-yellow-pages/tree/main/iyp/crawlers

The workflow for this is usually as follows:

1. Propose a new dataset by opening a discussion. The point of the discussion is to
decide if a dataset should be included and how to model it. Please add a short
description of why the dataset would be useful for you/others. This is just to prevent
adding datasets for the sake of it (“because we can”) which inflates to database size.
You also do not have to provide a perfect model at the start, we can figure this out
together.

2. Once it is decided that we want to integrate the dataset and how to model it, the
discussion will be converted into an issue. Then you (or someone else) can
implement it.

3. Open a pull request with the crawler implementation.
4. We will merge it and the next dump will contain your dataset!

https://github.com/InternetHealthReport/internet-yellow-pages/discussions
https://github.com/InternetHealthReport/internet-yellow-pages/issues
https://github.com/InternetHealthReport/internet-yellow-pages/pulls

	Internet Yellow Pages (IYP) Tutorial
	Get Started with IYP
	What is IYP?
	Overview of IYP data
	Internet Health Report
	IYP data modelling
	Documentation

	Cypher: Querying IYP
	IYP console
	Hello world
	Cypher 101

	More Cypher
	More Cypher Hints

	Example IYP queries
	AS and IP Prefixes
	Find prefixes originated by an AS
	Exercises

	IP addresses and HostNames
	Finding popular IPs in a prefix
	Finding DNS authoritative nameservers and corresponding domains

	More examples
	Other examples online
	Exercise

	Accessing IYP from code
	Setup
	Simple queries from Python
	Using Pandas data frames
	References

	Hosting a local IYP instance
	System requirements
	Clone the IYP repository
	Download a database dump
	Set up IYP
	Start/Stop IYP

	Adding data to IYP
	IYP code structure
	Writing a IYP crawler
	Making data publicly available

	Internet Yellow Pages (IYP) Tutorial
	Disclaimer

	Get Started with IYP
	What is IYP?
	Overview of IYP data
	Internet Health Report
	IYP data modelling
	Documentation

	Cypher: Querying IYP
	IYP console
	Hello world
	Cypher 101

	More Cypher
	More Cypher Hints

	Example IYP queries
	AS and IP Prefixes
	Find prefixes originated by an AS
	Exercises

	IP addresses and HostNames
	Finding popular IPs in a prefix
	Finding DNS authoritative nameservers and corresponding domains

	More examples
	Other examples online
	Exercise

	Accessing IYP from code
	Setup
	Simple queries from Python
	Using Pandas data frames
	References

	Hosting a local IYP instance
	System requirements
	Clone the IYP repository
	Download a database dump
	Set up IYP
	Start/Stop IYP

	Adding data to IYP
	IYP code structure
	Writing a IYP crawler
	Making data publicly available

