
Community Oriented Network Measurement

March 30, 2005

Welcome

Internet Measurement

- Kleinrock and Naylor, 1974:
 - Original ARPANET had built-in abilities to:
 - Trace a single packet's passage through the network
 - Obtain instantaneous traffic matrix
 - Obtain instantaneous queue lengths in IMPs
 - Obtain per-IMP traffic summaries and histograms
 - Obtain any IMP's routing table

Some Successes

- Router & AS topology characterization
- Characterization of interdomain system
- Inference of hidden properties
- Traffic modeling (short and long timescales)
- Statistical invariants (mice & elephants, Zipf laws)
- Characterization of Web graph
- Models of worm propagation
- Science driven engineering (AT&T, Sprint,...)

Big challenges ahead

- Engineering
 - Performance evaluation
 - Capacity planning
 - Security
- Science
 - Interaction of network and people / society
 - Growth laws
 - Statistical properties

How is Internet Measurement Done?

- Three models
 - Internet Measurement Organizations
 - CAIDA, NLANR, RIPE, ...
 - PI driven projects
 - Local measurement infrastructures
 - Built by effort of a single PI / small group
 - Planetlab
 - Community-shared resources
 - But very limited measurement capability

Time Ripe for a Community Approach?

 Community Approach = well defined measurement community + well defined measurement scope + variety of research agendas + need for expensive measurement equipment + community self-organization

Well Defined Community Exists

- IMW/IMC submissions
 - 2001: 53
 - 2002: 93
 - 2003: 109
 - 2004: 157
- PAM experienced similar growth 2004: 184 submissions
- Books in area

"Evolution and Structure of the Internet," Pastor-Satorras and Vespignani

Internet Science

- Measurement Scope: Understanding the Internet at all layers, as it evolves in time
- Does this correspond to any other sciences?
- Can we learn from how other sciences organize their measurement infrastructures?

Astronomy

- Large collection of discrete objects (stars, galaxies, planets, etc)
- Interested in their emissions and reflections
- Can measure these objects, but can't really do much to affect the objects being measured

Biology

- Interested in describing systems (cells, populations) that are
 - Complex
 - Comprised of many interacting mechanisms with
 - Many feedback loops
- Can affect systems in some ways
 - Can "poke" a cell or organism to see what happens
- Can't usefully take apart a functioning system

Earth Science

- Scale of the system studied is global
- Many important effects concern interaction of human society with the system
- Many important effects depend on geography and physical distance

Example Community Approaches

- Astronomy: building and operating large telescopes
- Oceanography: building and operating research vessels

Telescopes

- Range of options (smaller -> more informal)
 - Owned/operated by small groups
 - BU/Lowell 2m telescope
 - BU supports at \$150K/year (1/2 time)
 - National Facility
 - Keck
 - Space Based
 - Hubble

Astronomy

- Example: Keck Observatory
 - Governing board for telescope
 - One member per institution (Dean or Scientist)
 - Director appointed by Board
 - Time Allocation Committee
 - Not insiders peers from across discipline
 - Serve on committee 2-4 years
 - Accepts short (2-page) proposals 1x or 2x / year
 - Ranks and forms a consensus list
 - 20 proposals / semester (one day's reviewing)

Telescope proposal process

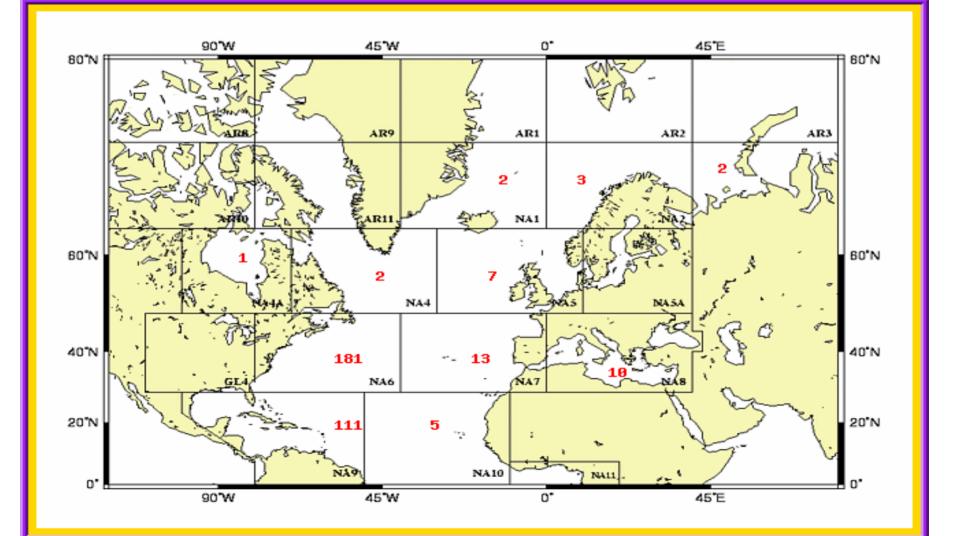
- Two parts
 - Science proposed
 - Amount of time being requested
- TAC:
 - Ranks science 1-10
 - Ranks time, makes recommendation
 - Can say "try 10% of time, if it works, come back for more" or "We think you can do this in 1/3 the time"
- Director makes final call if telescope is oversubscribed

Telescope Data

- Most national facilities make data available after some proprietary period
 - 6 months to a year
 - To allow PI to get data analyzed and out
 - Data will become available even if not used by PI
- Smaller facilities may not do this
 - Due to archiving costs
- Sometimes the Director will arrange a "shotgun marriage" if two projects propose to collect similar data

How do you build a new telescope?

- There is something called a "decadal review" - what astronomy needs to be done in the next 10 years
 - The next one is 5 years out, there is already a lot of jockeying going on ©
- Clearly needs to have community behind it
 - If you can get on the decadal review, you are in good shape
- Usually:
 - Donor + Institutions + NSF/NASA


Oceanography - Research Ships

- All research ships are handled by a single organization UNOLS (61 institutions)
 - 27 research vessels in 20 home locations
 - All schedules publicly available
- Ships are owned/operated by home institutions
 - under contract to NSF
- Chair, Council, and Committees
 - Ex: Ship Scheduling Committee

UNOLS oversees, Funding agency allocates

- \$50,000 / day ship time
- Ship time request submitted as part of proposal
 - PI specifies how much ship time is needed
 - About a year in advance
- NSF, ONR, NOAA panel reviews and approves ship time
- UNOLS Scheduling Committee
 - Implements NSF panel recommendations

Ship Scheduling


```
UNOLS Ship Time Request Form - Section ONE
UNOLS Request ID #: 2002022211112010
Version #: 004
Last Modified: 2002/03/03 15:45 EST
Date Issued: 2005/03/28 14:22 EST
_____
P.T. Name Last: McNichol First: Ann MT: P.
_____
Institution: Woods Hole Oceanographic Research vessel required for:
Institution X Ancillary Only
Address: Woods Hole, MA 02543 Principal Use
                  No Ship Required
                   Long Range Planning Document
Phone: 508-289-3394 Fax: 508-457-2183 Email: amcnichol@whoi.edu
Co P.I. Name Institution Co P.I. Name Institution
_____ ____
Robert Key Princeton University
_____
Proposal Title:
Collection and Measurement of DI13C and DI14C samples from the CLIVAR Repeat
Hydrography cruises
_____
Large Program Name: Other Research Purpose: Multi-discipline
If Other, specify: CLIVAR If Other, specify:
New Proposal? Y Agency Submitted to: Foreign EEZ? N
Funded Grant? N NSE/OCE/Other
Institutional Proposal #: Amount Requested: Area(s) of Operation:
GG11190.00
```

```
_____
Ship(s) Requested # Science
Year (Name or Size) Days Req. Optimum Dates Alternate Dates
2003 Large 44
2004 Large 66
2005 Large 102
2006 Large 51
2008 Large 89
_____
                     _____
                                    _____
Total Science & Ship Days Needed: ----- PORTS -----
352 Start: Intermediate: End:
353 Number in Science Party:
354 1
356 Equipment Required:
357 _ Vans _ P-Code GPS _ MCS _ Alvin _ DSL 120
358 _ Dynamic Positioning _ Multibeam _ SCS _ ROV _ 680 Cond.
359 Helicopter Operation
```

Oceanography Data

- Ocean Core Drilling Program
 - 15 years \$150M
 - All cores are kept forever (3 locations)
 - Professors send their students to sample cores
 - All data must be made available 1 year after collection
- · UNOLS
 - All data must be made available 2 years after collection
 - Researchers on same cruise share data
 - UNOLS matches experiments

Time Ripe for a Community Approach?

 Community Approach = well defined measurement community + well defined measurement scope + variety of research agendas + need for expensive measurement equipment + community self-organization

What model makes sense for a CONMI?

- Not single-threaded like a telescope
 - Many experiments should be able to run simultaneously
 - We can exploit virtualization
- Should have some sense of "global" coverage like ocean science
- Data archival
 - Notion of "embargo" or "proprietary period" seems to work in other sciences

Goals for Today

Answer the following questions:

- 1. What would the characteristics of a good CONMI be?
- 2. What are the obstacles to achieving this?
 - Research and Engineering
- 3. What are some reasonable first steps in this direction?

Schedule

- 9:30 round table: 3 minutes each
- 10:30 Passive Measurement
 - Joerg, Colleen, Gianluca
- 12:15 Lunch
- 1:15 Active Measurement
 - David, Tony, ...
- 2:15 Abilene
 - Rick / Matt
- 2:45 Break
- 3:15 Round Table / Open Discussion
- 4:15 Capturing Discussion Summary
- 6:30 PAM Reception!