Asymptotics, asynchrony, and asymmetry in distributed consensus

Anand D. Sarwate

Information Theory and Applications Center
University of California, San Diego

9 March 2011

Joint work with Alex G. Dimakis, Tuncer Can Aysal, Mehmet Ercan Yildiz, Martin Wainwright, and Anna Scaglione, and Tara Javidi
Rapprochement, consensus, accord
Rapprochement, consensus, accord
Rapprochement, consensus, accord
Rapprochement, consensus, accord
Consensus is an important task

- Calibration
- Dissemination
- Coordination
Abstracting the task
Abstracting the task

- Network of agents, each with an observation
Abstracting the task

- Network of agents, each with an observation
- *Communicate locally* – exchange messages about observations
Abstracting the task

- Network of agents, each with an observation
- *Communicate locally* – exchange messages about observations
- *Compute locally* – estimate a function of all values
There are many aspects to consider
There are many aspects to consider

- What are observations?
 - continuous or discrete?
 - scalar or vector?
There are many aspects to consider

- What are observations?
 - continuous or discrete?
 - scalar or vector?
- How can we communicate?
 - point-to-point or broadcast?
 - low resolution or high resolution?
There are many aspects to consider

- What are observations?
 - continuous or discrete?
 - scalar or vector?
- How can we communicate?
 - point-to-point or broadcast?
 - low resolution or high resolution?
- What do we compute?
 - averages
 - medians, quantiles
 - convex optimization
The goal(s) for today

1. The basic mathematical model for consensus
2. Routing and mobility can speed up convergence
3. Broadcasting can trade off accuracy for speed
4. The discreet charm of discrete messages
Building a mathematical model
The data model

- Set of \(n \) agents
- Agent \(i \) observes initial value \(x_i(0) \in \mathbb{R} \) for \(i = 1, 2, \ldots, n \)
- Assume data is bounded: \(x_i(0) \in [0, 10] \), for example
The data model

- Set of n agents
The data model

- Set of n agents
- Agent i observes initial value $x_i(0) \in \mathbb{R}$ for $i = 1, 2 \ldots n$
The data model

- Set of n agents
- Agent i observes initial value $x_i(0) \in \mathbb{R}$ for $i = 1, 2 \ldots n$
- Assume data is bounded: $x_i(0) \in [0, 10]$, for example
The communication graph

- Agents are arranged in a graph $G = (V, E)$.
- Agents i can communicate with j if there is an edge (i, j) (e.g. $j \in N_i$).
- Bidirectional communication: agents exchange messages.
The communication graph

- Agents are arranged in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
The communication graph

- Agents are arranged in a graph $G = (\mathcal{V}, \mathcal{E})$.
- Agents i can communicate with j if there is an edge (i, j) (e.g. $j \in \mathcal{N}_i$).
The communication graph

- Agents are arranged in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- Agents i can communicate with j if there is an edge (i, j) (e.g. $j \in \mathcal{N}_i$).
- Bidirectional communication: agents exchange messages.
Constraints on the communication
Constraints on the communication

- Time is slotted: only one transmission per slot.
Constraints on the communication

- Time is slotted: only one transmission per slot.
- Synchronous: use many edges, then update.
Constraints on the communication

- Time is slotted: only one transmission per slot.
- Synchronous: use many edges, then update.
- Asynchronous: edges chosen randomly in each slot.
Measuring performance

The goal is to pass messages between agents such that they can estimate the average of the initial observations:

\[x(t) \rightarrow \left(\sum_{i} x_i(0) \right) \cdot 1 \]

Averaging time \(T_{\text{ave}}(n, \epsilon) \) is time when \(x(t) \) is within \(\epsilon \) of the average:

\[
T_{\text{ave}}(n, \epsilon) = \sup_{x(0)} \inf_{t} \left\{ \mathbb{P}_{\text{Alg}} \left(\frac{\| x(t) - x_{\text{ave}} \cdot 1 \|}{\| x(0) \|} \geq \epsilon \right) \leq \epsilon \right\}
\]
A centralized solution

Simple centralized algorithm:

1. Build a spanning tree
2. Gather all the values at root
3. Compute and disseminate average

Pro:
- requires $\Theta(n)$ messages

Con:
- completely centralized
A centralized solution

Simple centralized algorithm:

1. Build a spanning tree
A centralized solution

Simple centralized algorithm:
1. Build a spanning tree
2. Gather all the values at root
A centralized solution

Simple centralized algorithm:

1. Build a spanning tree
2. Gather all the values at root
3. Compute and disseminate average

Pro: requires $\Theta(n)$ messages
Con: completely centralized
A centralized solution

Simple centralized algorithm:

1. Build a spanning tree
2. Gather all the values at root
3. Compute and disseminate average

Pro: requires $\Theta(n)$ messages

Con: completely centralized
Distributed synchronous consensus

Suppose each agent linearly combines itself and its neighbors:

\[x_i(t + 1) = W_{ii} x_i(t) + \sum_{j \in N_i} W_{ij} x_j(t) \]

\[\sum_j W_{ij} = 1 \quad \forall i \]

\[W_{ij} = W_{ji} \]

Synchronous algorithm where the update after each slot is given by:

\[x(t + 1) = W x(t) \]

where \(W \) is a **doubly stochastic** matrix.
A simple result

Theorem

For synchronous consensus with update matrix W,

$$T_{\text{ave}}(n, \epsilon) = \Theta (|\mathcal{E}| \cdot T_{\text{relax}}(W) \cdot \log \epsilon^{-1})$$

where $T_{\text{relax}}(W)$ is the relaxation time of the matrix W:

$$T_{\text{relax}}(W) = \frac{1}{1 - \lambda_2(W)}.$$

Proof: W is the transition matrix of a Markov chain – consensus is the convergence of the chain to its stationary distribution.
A theme with variations

Survey article by Dimakis et al. in *Proc. IEEE*.

- **Asynchronous** Boyd et al. (2006)
- **Discrete values** Benezit et al. (2010)
- **Many others!**
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t+1) = x_j(t+1) = \frac{1}{2}(x_i(t) + x_j(t))$.

UCSD Sarwate
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node \(i \) wakes up at random, chooses neighbor \(j \) at random.
- Nodes \(i \) and \(j \) exchange \(x_i(t) \) and \(x_j(t) \) and compute average.
- Set \(x_i(t+1) = x_j(t+1) = \frac{1}{2} (x_i(t) + x_j(t)) \).
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Asynchronous updates = “gossip”

- Node i wakes up at random, chooses neighbor j at random.
- Nodes i and j exchange $x_i(t)$ and $x_j(t)$ and compute average.
- Set $x_i(t + 1) = x_j(t + 1) = \frac{1}{2}(x_i(t) + x_j(t))$.
Gossip uses random linear updates

At each time a random pair \((i, j) \in \mathcal{E}\) averages:

\[
x_i(t + 1) = x_j(t + 1) = \frac{x_i(t) + x_j(t)}{2}.
\]

Each update is linear : \(x(t + 1) = W^{(i,j)}(t)x(t)\).

Theorem

Let \(\bar{W} = \mathbb{E}[W^{(i,j)}]\) over the edge selection process. Then

\[
T_{\text{ave}}(n, \epsilon) = \Theta \left(T_{\text{relax}}(\bar{W}) \cdot \log \epsilon^{-1} \right)
\]
The implication for big graphs

For the grid with uniform selection, gossip takes $\Theta(n^2)$ transmissions!

Selecting edges at random is inefficient! Local exchange is inefficient!
Network properties can accelerate convergence
Joint work with Alex Dimakis and Martin Wainwright
Geographic gossip with routing

- Assume that packets can be routed between any two nodes.
- Now select "neighbor" uniformly from all nodes and route message.
- "Effective graph" is now the complete graph.
Geographic gossip with routing

- Assume that packets can be routed between any two nodes.
Geographic gossip with routing

- Assume that packets can be routed between any two nodes.
- Now select “neighbor” uniformly from all nodes and route message.
Geographic gossip with routing

- Assume that packets can be routed between any two nodes.
- Now select “neighbor” uniformly from all nodes and route message.
- “Effective graph” is now the complete graph.
Example: the grid

\[
T_{\text{relax}}(\tilde{W})
\]

| Algorithm | \[T_{\text{relax}}(\tilde{W}) \] |
Example: the grid

<table>
<thead>
<tr>
<th>algorithm</th>
<th>$T_{\text{relax}}(\bar{W})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
</tr>
</tbody>
</table>

With routing $\Theta(n^2)$, this is unfair, since routing costs in number of hops.
Example: the grid

<table>
<thead>
<tr>
<th>algorithm</th>
<th>$T_{relax}(\bar{W})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Example: the grid

<table>
<thead>
<tr>
<th>algorithm</th>
<th>$T_{relax}(\bar{W})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

This is unfair, since routing costs in number of hops.
One-hop transmissions to reach consensus

Count number of hops (power) to get within ϵ of the average:

<table>
<thead>
<tr>
<th>algorithm</th>
<th>one-hop transmission</th>
</tr>
</thead>
</table>
One-hop transmissions to reach consensus

Count number of hops (power) to get within ϵ of the average:

<table>
<thead>
<tr>
<th>algorithm</th>
<th>one-hop transmission</th>
<th>Boyd et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>
One-hop transmissions to reach consensus

Count number of hops (power) to get within ϵ of the average:

<table>
<thead>
<tr>
<th>algorithm</th>
<th>one-hop transmission</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td>Boyd et al.</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n^{3/2})$</td>
<td>Dimakis, Sarwate, Wainwright</td>
</tr>
</tbody>
</table>
One-hop transmissions to reach consensus

Count number of hops (power) to get within ϵ of the average:

<table>
<thead>
<tr>
<th>algorithm</th>
<th>one-hop transmission</th>
<th>Boyd et al.</th>
<th>Dimakis, Sarwate, Wainwright</th>
<th>Benezit et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n^{3/2})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average on the way</td>
<td>$\Theta(n)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gossip with mobility

- Start with a grid of static nodes.
- Add m fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.
Gossip with mobility

- Start with a grid of static nodes.
Gossip with mobility

- Start with a grid of static nodes.
- Add m fully mobile nodes.
Gossip with mobility

- Start with a grid of static nodes.
- Add m fully mobile nodes.
Gossip with mobility

- Start with a grid of static nodes.
- Add m fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.
Gossip with mobility

- Start with a grid of static nodes.
- Add m fully mobile nodes.
- At each time, m mobile nodes choose new locations uniformly at random.
Gossip with mobility

• Start with a grid of static nodes.
• Add m fully mobile nodes.
• At each time, m mobile nodes choose new locations uniformly at random.
Gossip with mobility

- Same local transmission model.
- Mobile nodes reduce effective diameter to 2.
- Mobile nodes are accessed rarely.
Gossip with mobility

- Same local transmission model.
Gossip with mobility

- Same local transmission model.
- Mobile nodes reduce effective diameter to 2.
Gossip with mobility

- Same local transmission model.
- Mobile nodes reduce effective diameter to 2.
- Mobile nodes are accessed rarely.
Lower bounds on $T_{\text{relax}}(\hat{W})$
Lower bounds on $T_{\text{relax}}(\bar{W})$

- Merge all mobile nodes into a “super node.”
Lower bounds on $T_{\text{relax}}(\bar{W})$

- Merge all mobile nodes into a “super node.”
- T_{relax} for induced chain $\leq T_{\text{relax}}$ for original chain.
Lower bounds on $T_{\text{relax}}(\tilde{W})$

- Merge all mobile nodes into a “super node.”
- T_{relax} for induced chain $\leq T_{\text{relax}}$ for original chain.
- At most a m-factor improvement.
Upper bounds on $T_{\text{relax}}(\bar{W})$

Use a “flow” argument and the Poincaré inequality:
Upper bounds on $T_{relax}(\bar{W})$

Use a “flow” argument and the Poincaré inequality:

- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
Upper bounds on $T_{relax}(\bar{W})$

Use a "flow" argument and the Poincaré inequality:

- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
Upper bounds on $T_{\text{relax}}(\bar{W})$

Use a “flow” argument and the Poincaré inequality:

- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
Upper bounds on $T_{\text{relax}}(\bar{W})$

Use a “flow” argument and the Poincaré inequality:

- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
- Route flows $i \rightarrow j$ to minimize overload on each edge.
Upper bounds on $T_{\text{relax}}(\bar{W})$

Use a “flow” argument and the Poincaré inequality:

- Demands $D_{ij} = \pi(i)\pi(j) = n^{-2}$ between each pair of nodes.
- Capacity $C_{ik} = \pi(i)\bar{W}_{ik} = n^{-1}\bar{W}_{ik}$ between each edge.
- Route flows $i \rightarrow j$ to minimize overload on each edge.
Network effects on convergence

<table>
<thead>
<tr>
<th>algorithm</th>
<th>transmissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network effects on convergence

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Transmissions</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td>Boyd et al.</td>
</tr>
</tbody>
</table>

UCSD Sarwate
Network effects on convergence

<table>
<thead>
<tr>
<th>algorithm</th>
<th>transmissions</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td>Boyd et al.</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n^{3/2})$</td>
<td>Dimakis-Sarwate-Wainwright</td>
</tr>
</tbody>
</table>

network effects on convergence
Network effects on convergence

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Transmissions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td>Boyd et al.</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n^{3/2})$</td>
<td>Dimakis-Sarwate-Wainwright</td>
</tr>
<tr>
<td>Average on the way</td>
<td>$\Theta(n)$</td>
<td>Benezit et al.</td>
</tr>
</tbody>
</table>
Network effects on convergence

<table>
<thead>
<tr>
<th>algorithm</th>
<th>transmissions</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>(\Theta(n^2))</td>
<td>Boyd et al.</td>
</tr>
<tr>
<td>With routing</td>
<td>(\Theta(n^{3/2}))</td>
<td>Dimakis-Sarwate-Wainwright</td>
</tr>
<tr>
<td>Average on the way</td>
<td>(\Theta(n))</td>
<td>Benezit et al.</td>
</tr>
<tr>
<td>Add (m) mobile</td>
<td>(\Theta\left(\frac{n^2}{m}\right))</td>
<td>Sarwate-Dimakis</td>
</tr>
</tbody>
</table>
Network effects on convergence

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Transmissions</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$\Theta(n^2)$</td>
<td>Boyd et al.</td>
</tr>
<tr>
<td>With routing</td>
<td>$\Theta(n^{3/2})$</td>
<td>Dimakis-Sarwate-Wainwright</td>
</tr>
<tr>
<td>Average on the way</td>
<td>$\Theta(n)$</td>
<td>Benezit et al.</td>
</tr>
<tr>
<td>Add m mobile</td>
<td>$\Theta\left(\frac{n^2}{m}\right)$</td>
<td>Sarwate-Dimakis</td>
</tr>
<tr>
<td>k-local</td>
<td>$O\left(\frac{n^2}{k^2}\right)$</td>
<td>Sarwate-Dimakis</td>
</tr>
</tbody>
</table>
Asymmetric gossip using broadcasting

Joint work with T.C. Aysal, M.E. Yildiz and A. Scaglione
Wireless is inherently broadcast

- In a wireless network, all neighbors can hear a transmission.
- Can perform multiple computations per slot.
- When graph is well-connected, can get performance gains.
Wireless is inherently broadcast

- In a wireless network, all neighbors can hear a transmission.
Wireless is inherently broadcast

- In a wireless network, all neighbors can hear a transmission.
- Can perform multiple computations per slot.
Wireless is inherently broadcast

- In a wireless network, all neighbors can hear a transmission.
- Can perform multiple computations per slot.
- When graph is well-connected, can get performance gains.
Gossip in one direction

\[\text{All neighbors} \ j \in N_i \text{ of node } i \text{ can hear transmission.} \]

\[\text{Can do a simultaneous update} \quad x_j(t + 1) = \gamma x_j(t) + (1 - \gamma) x_i(t). \]

\[\text{No information exchange – can get consensus (agreement) but not the true average.} \]

UCSD Sarwate
Gossip in one direction

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
Gossip in one direction

- All neighbors \(j \in N_i \) of node \(i \) can hear transmission.
- Can do a simultaneous update:
 \[
 x_j(t + 1) = \gamma x_j(t) + (1 - \gamma) x_i(t).
 \]
Gossip in one direction

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t + 1) = \gamma x_j(t) + (1 - \gamma)x_i(t)$.
Gossip in one direction

- All neighbors $j \in N_i$ of node i can hear transmission.
- Can do a simultaneous update $x_j(t + 1) = \gamma x_j(t) + (1 - \gamma)x_i(t)$.
Gossip in one direction

- All neighbors $j \in \mathcal{N}_i$ of node i can hear transmission.
- Can do a **simultaneous update** $x_j(t + 1) = \gamma x_j(t) + (1 - \gamma) x_i(t)$.
- No information exchange – can get consensus (agreement) but not the true average.
Analyzing the broadcast gossip algorithm

Again, update given by a matrix multiplication:

\[x(T) = \left(\prod_{t=1}^{T} W^{(i_t)} \right) x(0) \]

For all \(t \) we have \(W^{(i_t)} \mathbf{1} = \mathbf{1} \), so consensus is stable.
Benefits and challenges of broadcast

- No coordination to exchange data.
- Exploits potential long-range connections from shadowing/fading.
- No convergence to true average, but to consensus.
- Important to control the MSE of the consensus.
Main results

Algorithm reaches consensus almost surely:

$$\mathbb{P} \left(\lim_{t \to \infty} x(t) = c1 \right) = 1.$$

The expected consensus value is the true average:

$$\mathbb{E}[c] = \bar{x}$$

Moreover, there is a closed form for the limiting MSE.
Simulations : MSE
Simulations: MSE

The graph shows the relationship between the number of radio transmissions per node and the mean squared error (MSE) for different transmission strategies:
- **Randomized N=100** (dotted line)
- **Geographic N=100** (solid line)
- **Broadcast N=100** (dashed line)

As the number of radio transmissions increases, the MSE decreases for all strategies. The geographic strategy shows the lowest MSE compared to the randomized and broadcast strategies.
Extensions

- Can look at effect of the wireless medium as well.
- Fading allows long-distance connections.
- Initial results suggest significant improvement when path loss is not too severe.
Extensions

- Can look at effect of the wireless medium as well.
Extensions

• Can look at effect of the wireless medium as well.
• Fading allows long-distance connections.
Extensions

- Can look at effect of the wireless medium as well.
- Fading allows long-distance connections.
- Initial results suggest significant improvement when path loss is not too severe.
Implications

• Broadcasting is simpler than standard gossip – no exchange.
• More robust to packet drops which may occur in wireless.
• Faster convergence in small-to-medium networks.
Implications

- Broadcasting is simpler than standard gossip – no exchange.
Implications

- Broadcasting is simpler than standard gossip – no exchange.
- More robust to packet drops which may occur in wireless.
Implications

- Broadcasting is simpler than standard gossip – no exchange.
- More robust to packet drops which may occur in wireless.
- Faster convergence in small-to-medium networks.
Reaching consensus discretely
Joint work with Tara Javidi
Typical assumptions are unrealistic

Existing work doesn’t “look practical”:
Typical assumptions are unrealistic

Existing work doesn’t “look practical”:

- Transmit and receive real numbers
Typical assumptions are unrealistic:

Existing work doesn’t “look practical”:

- Transmit and receive real numbers
- Consensus is the only goal of the network
Typical assumptions are unrealistic

Existing work doesn’t “look practical”:

- Transmit and receive real numbers
- Consensus is the only goal of the network
- Asymptotics and universality
Synchronous quantized communication

• At each time t all neighbors (i,j) exchange quantized values $\hat{x}_j(t)$.
• Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than R bits.
• Update $x_i(t+1)$ as a function of $x_i(t)$ and messages $\{\hat{x}_j(t)\}$.
Synchronous quantized communication

- At each time t all neighbors (i,j) exchange quantized values $\hat{x}_j(t)$.
Synchronous quantized communication

- At each time t all neighbors (i, j) exchange quantized values $\hat{x}_j(t)$.
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than R bits.
Synchronous quantized communication

- At each time t all neighbors (i, j) exchange quantized values $\hat{x}_j(t)$.
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than R bits.
- Update $x_i(t + 1)$ as a function of $x_i(t)$ and messages $\{\hat{x}_j(t)\}$.
A simple protocol

\[x_i(t + 1) = (x_i(t) - \hat{x}_i(t)) + \sum_{j \in N_i \cup \{i\}} W_{ij} \hat{x}_j(t). \]

- Quantization error plus weighted sum of messages
- Iterations preserve sum \(\sum_i x_i(t) \)
So how well does it work?
So how well does it work?

Random topology, 49 nodes, good connectivity
So how well does it work?

Random topology, 49 nodes, poor connectivity

Log error against iterations
So how well does it work?

Grid, 100 nodes

Log error vs. Iterations graph
Observations

- Quantization is important for practical applications.
- Average consensus to within reasonable resolution can be fast.
- Overhead can be reduced by piggybacking on existing traffic.
• Algorithm can use network resources to accelerate convergence.
• Reaching consensus may be faster than computing averages.
• Lower-resolution averages can be fast and require less overhead.
Some challenges for the future

- Implementing consensus in protocols for applications.
- Extending to other distributed computation problems.
- Quantifying robustness in rate, connectivity, etc.
Thank you!