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In a social network ...

@ Can we predict future friendships?
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In a protein-protein interaction network

@ Can we identify unknown interactions?

C. elegans interactome from proteinfunction.net

3/71


proteinfunction.net

An open question

@ What is a universal model for networks?

@ Tentative answer:
» Values of explicit variables represent side-information.
» Latent values represent the position of each node in the
network.
» The probability that an edge exists is a function of
the variables representing its endpoints.

o p(yli,j) = o(af Aoy + x] Wa; + vl'z;)
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Outline

@ Introduction: Nine related prediction tasks
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1: Link prediction

@ Given current friendship edges, predict future edges.
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@ Application: Facebook.

@ Popular method: compute scores from graph topology.

) )
? g}

Q? l%s
? (Q:s

2 ?

/71



2: Collaborative filtering

@ Given ratings of movies by users, predict other ratings.
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@ Application: Netflix.

@ Popular method: matrix factorization.
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3: Suggesting citations

@ Each author has referenced certain papers. Which other papers
should s/he read?

vV VvV /4
& O ? @
- ? Q (%)
& 2 ? (%)
& O o ?

@ Application: Collaborative Topic Modeling for Recommending
Scientific Articles, Chong Wang and David Blei, KDD 2011.

@ Method: specialized graphical model.



4: Gene-protein networks

@ Experiments indicate which regulatory proteins control which

genes.
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@ Application: Energy independence :-)

@ Popular method: support vector machines (SVMs).
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5: ltem response theory

@ Given answers by students to exam questions, predict
performance on other questions.
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@ Applications: Adaptive testing, diagnosis of skills.

@ Popular method: latent trait models.
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6: Compatibility prediction

@ Given questionnaire answers, predict successful dates.
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@ Application: eHarmony.

@ Popular method: learn a Mahalanobis (transformed Euclidean)

distance metric.
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7: Predicting behavior of shoppers

@ A customer’s actions include { look at product, put in cart,
finish purchase, write review, return for refund }.
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@ Application: Amazon.

@ New method: LFL (latent factor log linear model).
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8: Analyzing legal decision-making

@ Three federal judges vote on each appeals case. How would
other judges have voted?
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9: Detecting security violations

@ Thousands of employees access thousands of medical records.
Which accesses are legitimate, and which are snooping?
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Dyadic prediction in general

@ Given labels for some pairs of items (some dyads), predict labels

for other pairs.
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@ Popular method: Depends on research community!
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Dyadic prediction formally

e Training set ((r;,¢;),y;) € RXxCx )Y fori=1toi=n.
» (ri,ci) is a dyad, y; is a label.

@ Output: Function f: R xC — )Y
» Often, but not necessarily, transductive.

o Flexibility in the nature of dyads and labels:

» 7;,¢; can be from same or different sets,
with or without unique identifiers,
with or without feature vectors.

» 7; can be unordered, ordered, or real-valued.

@ For simplicity, talk about users, movies and ratings.
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Latent feature models

@ Associate latent feature values with each user and movie.
@ Each rating is the dot-product of corresponding latent vectors.

@ Learn the most predictive vector for each user and movie.
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» Latent features play a similar role to explicit features.
» Computationally, learning does SVD (singular value
decomposition) with missing data.
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What's new

Using all available information.

Inferring good models from unbalanced data

Predicting well-calibrated probabilities.

Scaling up.

Unifying disparate problems in a single framework.
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The perspective of computer science

@ Solve a predictive problem.
» Contrast: Non-predictive task, e.g. community detection.

@ Make training time linear in number of known edges.

» Contrast: MCMC, all pairs betweenness, SVD, etc. use too
much time or memory.

@ Compare on accuracy to best alternative methods.
» Contrast: Compare only to classic methods.
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Issues with some non-CS research

@ No objectively measurable goal.
» An algorithm but no goal function, e.g. betweenness.

@ Research on “complex networks” ignores complexity?

» Uses only graph structure, e.g. commute time.
» Should also use known properties of nodes and edges..

@ lIgnoring hubs, partial memberships, overlapping groups, etc.
» Assuming that the only structure is communities or blocks.
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Networks are not special

@ A network is merely a sparse binary matrix.
@ Many dyadic analysis tasks are not network tasks,
e.g. collaborative filtering.

@ Human learning results show that social networks are not
special.
» Experimentally: humans are bad at learning network structures.
» And they learn non-social networks just as well as social ones.
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What do humans learn?

@ Source: Acquisition of Network Graph Structure by Jason Jones,
Ph.D. thesis, Dept of Psychology, UCSD, November 2011.

@ My interpretation, not necessarily the author’s.
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@ Humans do not learn social networks better than other networks.

o Differences here are explained by memorability of node names.
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@ Humans learn edges involving themselves better than edges
involving two other people.

Accuracy
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@ Humans do not memorize edges at any constant rate.

@ Learning slows down and plateaus at low accuracy.
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@ Humans get decent accuracy only on nodes with low or high
degree.
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Summary of human learning

@ A subject learns an edge in a network well only if

» the edge involves him/herself, or
» one node of the edge has low or high degree.

@ Conclusion: Humans do not naturally learn network structures.

@ Hypothesis: Instead, humans learn unary characteristics of other
people:
» whether another person is a loner or gregarious,
» whether a person is a friend or enemy of oneself,
» in high school, whether another student is a geek or jock,
> etc.
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Outline

© The LFL method

28/71



Desiderata for dyadic prediction

@ Predictions are pointless unless used to make decisions.
» Need probabilities of ratings e.g. p(5 stars|user, movie)

@ What if labels are discrete?

» Link types may be { friend, colleague, family }
» For Amazon, labels may be { viewed, purchased, returned }

@ What if a user has no ratings, but has side-information?

» Combine information from latent and explicit feature vectors.

@ Address these issues within the log-linear framework.
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The log-linear framework

@ A log-linear model for inputs x € A" and labels y € ) assumes

plyle; w) o exp (Z w@-fi(:v,y))

i=1
@ Predefined feature functions f; : X x Y — R.

@ Trained weight vector w.

@ Useful general foundation for predictive models:
Models probabilities of labels given an example
Purely discriminative: no attempt to model x
Labels can be nominal and/or have structure
Combines multiple sources of information correctly.

v vV VvV VY
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A first log-linear model for dyadic prediction

@ For dyadic prediction, each example z is a dyad (r,c).
@ Feature functions must depend on both examples and labels.

@ Simplest choice:

f'r’c’y’((rv C)7y) = 1[7" = 70/, C= C/a Y= y/]

@ Conceptually, re-arrange w into a matrix WY for each label y:

pyl(r; c);w) oc exp(Wr,).
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Factorizing interaction weights

@ Problem: 1[r =1',c =,y =y] is too specific to individual

(r', ) pairs.

@ Solution: Factorize the W¥ matrices. Write W¥ = AT B so
K
T
Wi = (al.) B = Z oy B0,
k=1

@ For each y, each user and movie has a vector of values
representing characteristics that predict .

» In practice, a single vector of movie characteristics suffices:
/8}:/ = Bc

» The characteristics predicting that a user will rate 1 star versus
5 stars are different.
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Incorporating side-information

e If a dyad (r,c) has a vector s,. € R? of side-information, define

p(yl(r, c);w) oc exp((af)" BY + (1) " sc).

e Multinomial logistic regression with s,. as feature vector.
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Incorporating side-information - |l

@ What if features are only per-user wu, or per-movie m,?

e Naive solution: Define s,. = [u, m,].
» But then all users have the same rankings of movies.

@ Better: Apply bilinear model to user and movie features
p(yl(r, c);w) o eXp((afi)Tﬁ};‘ +ul'V¥m,).

@ The matrix V¥ consists of weights on cross-product features.
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The LFL model: definition

@ Resulting model with latent and explicit features:
ply|(r, c);w) oc exp((af)' B + (v*) spe + u Vi)

@ oY and f3V are latent feature vectors in R,
» K is number of latent features

@ Practical details:
» Fix a base class for identifiability.
» Intercept terms for each user and movie are important.
» Use Lo regularization.
» Train with stochastic gradient descent (SGD).
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Unordered versus numerical labels

@ For unordered ratings, predict the most probable, and train to
optimize log likelihood.

@ Not desirable for numerical ratings:
» Difference between 1 and 5 # difference between 4 and 5

o Better: Predict

1V

Ely] =Y y-pyl(r.c);w)

and optimize mean squared error MSE.

» The expectation E[y] is a summary function.
» A standard latent feature model is limited to one factorization
for all rating levels.

36
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Assessing uncertainty

@ The variance measures the uncertainty of a prediction.

@ For numerical ratings

E[y*] - Zy pyl(r, c);w (Zy p(y|(r, c); )>

@ Can be combined with business rules, e.g. if confidence in
predicted link < cost threshold then do not run expensive
experiment.
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Experimental goals

@ Show ability to
» Handle unordered labels for multiclass link prediction
» Exploit numerical structure of labels for collaborative filtering
» Incorporate side-information in a cold-start setting.

o Later:

» More detailed study of link prediction
» Complementarity of explicit and latent features.
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Multiclass link prediction

@ The Alyawarra dataset has kinship relations {brother, sister,
father, ...} between 104 people.

o LFL outperforms Bayesian models, even infinite ones.

» MMSB, IRM assume interactions set by cluster membership.
» IBP has binary latent features.
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Test set AUC

@ Bayesian averaging over multiple models does not add power.
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Collaborative filtering

@ MovielLens (6040 users, 3952 movies, 1M ratings of 1-5 stars)

e EachMovie (36,656 users, 1628 movies, 2.6M ratings of 1-6
stars)

0.9000 1.3000
1.2500

0.8500 1.2000

0.8000 1.1500
1.1000

W 0.7500 B VMMF & 1.0500 B MMMF

= HIFL ELFL
0.7000 1.0000
0.6500 0.9500
h 05200
0.6000 0.8500
Movielens 1M EachMovie Movielens 1M EachMovie

@ LFL model is more general, more accurate, and faster than
maximum margin matrix factorization [Rennie and Srebro, 2005].
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Measuring uncertainty

@ Estimated uncertainty correlates with observed test set errors
and average rating of movie. For Movielens:
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Side-information solves the cold-start problem

@ Three scenarios on the 100K MovielLens dataset:

» Standard: No cold-start for users or movies

» Cold-start users: Randomly discard ratings of 50 users

» Cold-start users + movies: Randomly discard ratings of 50
users and ratings for all their test set movies also.

Test set MAE
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Outline

© Link prediction in networks

43 /71



Link prediction

e Link prediction: Given a partially observed graph, predict
whether or not edges exist for the unknown-status pairs.

@ Unsupervised (non-learning) scores are classical models
» e.g. common neighbors, Katz measure, Adamic-Adar.

@ Technically, structural rather than temporal link prediction.
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Latent feature approach

@ Each node's identity influences its linking behavior.

@ Nodes also can have side-information predictive of linking.

» For author-author linking, side-information can be words in
authors’ papers.

Edges may also possess side-information.

» For country-country conflict, side-information is geographic
distance, trade volume, etc.

Identity determines latent features.
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Latent feature approach

@ LFL model for binary link prediction has parameters

» latent vectors «; € R¥ for each node i

» scaling factors A € R*** for asymmetric graphs
» weights W € R%9 for node features

» weights v € R? for edge features.

@ Given node features z; and edge features z;;
Gij = pledgeli, j) = (o Aaj + 2T Wa; + 07 2;)

for sigmoid function o(x) = 1/(1 + exp(—=x))

@ Minimize regularized training loss:

46
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Challenge: Class imbalance

@ Vast majority of node-pairs do not link with each other.
@ AUC (area under ROC curve) is standard performance measure.

@ For a random pair of positive and negative examples, AUC is the
probability that the positive one has higher score.

» Not influenced by relative size of positive and negative classes.

@ Model trained to maximize accuracy is potentially suboptimal.

» Sampling is popular, but loses information.
» Weighting is merely heuristic.
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Optimizing AUC

@ Empirical AUC counts concordant pairs
A Z 1f, — fy > 0]
pE+,9€—

@ Train latent features to maximize approximation to AUC:

alexl,ivlvl,u Z g(Gij — G, 1) + Qa, A, W, v)
(4,5,k)€D

where D = {(Z,j, ]{?) . Gij = ]_, sz = 0}

@ With stochastic gradient descent, a fraction of one epoch is
enough for convergence.
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Experimental comparison

e Compare

» latent features versus unsupervised scores
» latent features versus explicit features.

@ Datasets from applications of link prediction:

» Computational biology: Protein-protein interaction network,
metabolic interaction network
» Citation networks: NIPS authors, condensed matter physicists
» Social phenomena: Military conflicts between countries,
U.S. electric power grid.
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Link prediction datasets

Dataset Nodes [TF] |T—| +ve:—ve ratio  Average degree
Prot-Prot 2617 23710 6,824,979 1:300 9.1
Metabolic 668 5564 440,660 1:80 8.3
NIPS 2865 9466 8,198,759 1: 866 3.3
Condmat 14230 2392 429,232 1:179 0.17
Conflict 130 320 16580 1:52 25
PowerGrid 4941 13188 24,400,293 1:2000 2.7

@ Protein-protein interaction data from Noble. Each protein has a 76 dimensional explicit
feature vector.

@ Metabolic pathway interaction data for S. cerevisiae provided in the KEGG/PATHWAY
database [ISMB]. Each node has three feature sets: a 157 dimensional vector of
phylogenetic information, a 145 dimensional vector of gene expression information, and a
23 dimensional vector of gene location information.

@ NIPS: Each node has a 14035 dimensional bag-of-words feature vector, the words used
by the author in her publications. LSI reduces the number of features to 100.

@ Co-author network of condensed-matter physicists [Newman].

@ Military disputes between countries [MID 3.0]. Each node has 3 features: population,
GDP and polity. Each dyad has 6 features, e.g. the countries’ geographic distance.

@ US electric power grid network [Watts and Strogatz].
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Latent features versus unsupervised scores

@ Latent features are more predictive of linking behavior.
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Learning curves

@ Unsupervised scores need many edges to be known.
o Latent features are predictive with fewer known edges.

@ For the military conflicts dataset:
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Latent features combined with side-information

@ Difficult to infer latent structure more predictive than

side-information.

@ But combining the two can be beneficial:
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Outline

@ Bilinear regression to learn affinity
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What is affinity?

o Affinity may be called similarity, relatedness, compatibility,
relevance, appropriateness, suitability, and more.

» Two OCR images are similar if they are versions of the same
letter.

» Two eHarmony members are compatible if they were mutually
interested in meeting.

» An advertisement is relevant for a query if a user clicks on it.

» An action is suitable for a state if it has high long-term value.

o Affinity can be between items from the same or different spaces.

o Affinity can be binary or real-valued.
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The propensity problem

@ Idea: To predict affinity, train a linear function

flu,v) =w - [u,v].

e Flaw: Ranking of second entities v is the same regardless of u:

flu,v) =w - [u,v] = w, - u+w, - v.

The ranking of v entities is by the dot product w, - v.

56
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Bilinear representation

@ Proposal: Represent affinity of vectors u and v with a function
fu,v) = u"Wo

where W is a matrix.

e Different vectors u give different ranking vectors w(u) = u?W.
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Learning W

@ A training example is (u,v,y) where y is a degree of affinity.

@ Let u and v have length m and n. Then
u'Wo = Z Z(W ounv™);; = vec(W) - vec(uv™).
i=1 j=1

@ Idea: Convert (u,v,y) into (vec(uv?),y).

@ Then learn vec(WW) by standard linear regression.
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What does W' mean?

@ Each entry of uv” is the interaction of a feature of the u entity
and a feature of the v entity.

@ Labels may be real-valued or binary: y = 1 for affinity, y = 0 for
no affinity.

@ Can use regularization, logistic regression, linear SVM, and more.

@ Can maximize AUC.
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Re-representations

Add a constant 1 to u and v to capture propensities.

If u and v are too short, expand them, e.g. change u to uu’

If w and/or v is too long, define W = ABT where A and B are
rectangular.

If W is square, define W = ABT + D where D is diagonal.

But finding the optimal representation AB” or ABT + D is not
a convex problem.

(]
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Affinities versus distances

@ Learning affinity is an alternative to learning a distance metric.

e The Mahalanobis metric is d(u,v) = \/(u — v)TM (u — v)
where M is positive semidefinite.

@ Learning affinities is more general.
» Distance is defined only if © and v belong to the same space.
» In information retrieval, u can be a query in one language and v
can be a relevant document in a different language.

o Affinity is not always symmetric.
» Because queries are shorter than documents, the relatedness of
queries and documents is not symmetric.
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Learning Mahalanobis distance

@ Squared Mahalanobis distance is d?(u,v) =

(u—v)"M(u—v) = ZZMO u—v)(u—v)")y

=1 j=1
= vec(M) - vec((u — v)(u — v)7).
@ So M can be learned by linear regression, like W.

@ The outer product (u — v)(u — v)T is symmetric, so M is
symmetric also.

@ Existing methods for learning Mahalanobis distance are less
efficient.
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Experiments with eHarmony data

@ The training set has 506,688 labeled pairs involving 274,654
members of eHarmony, with 12.3% positive pairs.

@ The test set has 439,161 pairs involving 211,810 people, with
11.9% positive pairs.

@ Previously used in [McFee and Lanckriet, 2010].
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Visualization

@ Positive training pairs from the U.S. and Canada.
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Data representations

@ Each user is a vector of length d = 56. “Propensity” uses
vectors of length 2d + 1

@ ‘“Interaction” uses length 3d + 1 by adding u,;v; for : = 1 to d.

o “Extended interaction” adds nonlinear transformations of
components u; and v;.

e “Bilinear” uses vectors of length d?.
@ “Mahalanobis” uses vectors of length d(d + 1)/2 = 1597.

@ Extended bilinear and Mahalanobis representations use quadratic
vectors concatenated with extended interaction vectors.
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Experimental details

@ Training uses linear regression with an intercept.
@ Targets are 0 or 1. Features are z-scored.
@ L, regularization with strength one.

@ For comparability, id numbers, latitudes, and longitudes are
ignored.
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Experimental results

@ Training and test AUC for alternative representations.

training test | time
representation AUC AUC | (s)
MLR-MAP 0.624
propensity 0.6299 0.6354 14
interaction 0.6410 0.6446 20
extended interaction 0.6601 0.6639 64
Mahalanobis 0.6356 0.6076 | 379
extended Mahalanobis | 0.6794 0.6694 | 459
bilinear 0.6589 0.6374 | 973
extended bilinear 0.6740 0.6576 | 1324

@ The large test set makes differences statistically significant.
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Observations

@ Bilinear regression is tractable. Training with a half million
examples of expanded length 3000 takes 22 minutes.

@ Learning propensity is a strong baseline, with higher accuracy
than the best previous method.

o Bilinear affinity gives higher accuracy than Mahalanobis distance.

@ A nonlinear extended version of Mahalanobis distance is best
overall.
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Outline

© Discussion
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If time allowed

@ Scaling up to Facebook-size datasets: egocentric subgraphs.

Better AUC than supervised random walks
[Backstrom and Leskovec, 2011].

@ Predicting labels for nodes, e.g. who will play Farmville
(within network classification, collective classification).
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Conclusions

@ Many prediction tasks involve pairs of entities:
collaborative filtering, friend suggestion,
compatibility forecasting, reinforcement learning, and more.

@ Edge prediction based on learning latent features is more
accurate than prediction based on any graph-theoretic formula.

@ The most successful methods combine latent features with
explicit features of nodes and of dyads.
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