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In a social network ...
Can we predict future friendships?

flickr.com/photos/greenem
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In a protein-protein interaction network ...
Can we identify unknown interactions?

C. elegans interactome from proteinfunction.net
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An open question

What is a universal model for networks?

Tentative answer:
I Values of explicit variables represent side-information.
I Latent values represent the position of each node in the

network.
I The probability that an edge exists is a function of

the variables representing its endpoints.

p(y|i, j) = σ(αTi Λαj + xTi Wxj + vT zij)
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1: Link prediction

Given current friendship edges, predict future edges.

Application: Facebook.

Popular method: compute scores from graph topology.
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2: Collaborative filtering

Given ratings of movies by users, predict other ratings.

Application: Netflix.

Popular method: matrix factorization.
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3: Suggesting citations

Each author has referenced certain papers. Which other papers
should s/he read?

Application: Collaborative Topic Modeling for Recommending
Scientific Articles, Chong Wang and David Blei, KDD 2011.

Method: specialized graphical model.
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4: Gene-protein networks

Experiments indicate which regulatory proteins control which
genes.

Application: Energy independence :-)

Popular method: support vector machines (SVMs).
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5: Item response theory

Given answers by students to exam questions, predict
performance on other questions.

Applications: Adaptive testing, diagnosis of skills.

Popular method: latent trait models.
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6: Compatibility prediction

Given questionnaire answers, predict successful dates.

Application: eHarmony.

Popular method: learn a Mahalanobis (transformed Euclidean)
distance metric.
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7: Predicting behavior of shoppers

A customer’s actions include { look at product, put in cart,
finish purchase, write review, return for refund }.

Application: Amazon.

New method: LFL (latent factor log linear model).
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8: Analyzing legal decision-making

Three federal judges vote on each appeals case. How would
other judges have voted?
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9: Detecting security violations

Thousands of employees access thousands of medical records.
Which accesses are legitimate, and which are snooping?
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Dyadic prediction in general

Given labels for some pairs of items (some dyads), predict labels
for other pairs.

Popular method: Depends on research community!

15 / 71



Dyadic prediction formally

Training set ((ri, ci), yi) ∈ R× C × Y for i = 1 to i = n.
I (ri, ci) is a dyad, yi is a label.

Output: Function f : R× C → Y
I Often, but not necessarily, transductive.

Flexibility in the nature of dyads and labels:
I ri, ci can be from same or different sets,

with or without unique identifiers,
with or without feature vectors.

I yi can be unordered, ordered, or real-valued.

For simplicity, talk about users, movies and ratings.
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Latent feature models
Associate latent feature values with each user and movie.

Each rating is the dot-product of corresponding latent vectors.

Learn the most predictive vector for each user and movie.

I Latent features play a similar role to explicit features.
I Computationally, learning does SVD (singular value

decomposition) with missing data.
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What’s new

Using all available information.

Inferring good models from unbalanced data

Predicting well-calibrated probabilities.

Scaling up.

Unifying disparate problems in a single framework.
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The perspective of computer science

Solve a predictive problem.
I Contrast: Non-predictive task, e.g. community detection.

Make training time linear in number of known edges.
I Contrast: MCMC, all pairs betweenness, SVD, etc. use too

much time or memory.

Compare on accuracy to best alternative methods.
I Contrast: Compare only to classic methods.
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Issues with some non-CS research

No objectively measurable goal.
I An algorithm but no goal function, e.g. betweenness.

Research on “complex networks” ignores complexity?
I Uses only graph structure, e.g. commute time.
I Should also use known properties of nodes and edges..

Ignoring hubs, partial memberships, overlapping groups, etc.
I Assuming that the only structure is communities or blocks.
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Networks are not special

A network is merely a sparse binary matrix.

Many dyadic analysis tasks are not network tasks,
e.g. collaborative filtering.

Human learning results show that social networks are not
special.

I Experimentally: humans are bad at learning network structures.
I And they learn non-social networks just as well as social ones.
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What do humans learn?

Source: Acquisition of Network Graph Structure by Jason Jones,
Ph.D. thesis, Dept of Psychology, UCSD, November 2011.

My interpretation, not necessarily the author’s.
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Humans do not learn social networks better than other networks.

Differences here are explained by memorability of node names.
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Humans learn edges involving themselves better than edges
involving two other people.
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Humans do not memorize edges at any constant rate.

Learning slows down and plateaus at low accuracy.
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Humans get decent accuracy only on nodes with low or high
degree.
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Summary of human learning

A subject learns an edge in a network well only if
I the edge involves him/herself, or
I one node of the edge has low or high degree.

Conclusion: Humans do not naturally learn network structures.

Hypothesis: Instead, humans learn unary characteristics of other
people:

I whether another person is a loner or gregarious,
I whether a person is a friend or enemy of oneself,
I in high school, whether another student is a geek or jock,
I etc.
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Desiderata for dyadic prediction

Predictions are pointless unless used to make decisions.
I Need probabilities of ratings e.g. p(5 stars|user, movie)

What if labels are discrete?
I Link types may be { friend, colleague, family }
I For Amazon, labels may be { viewed, purchased, returned }

What if a user has no ratings, but has side-information?
I Combine information from latent and explicit feature vectors.

Address these issues within the log-linear framework.
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The log-linear framework

A log-linear model for inputs x ∈ X and labels y ∈ Y assumes

p(y|x;w) ∝ exp

(
n∑
i=1

wifi(x, y)

)

Predefined feature functions fi : X × Y → R.

Trained weight vector w.

Useful general foundation for predictive models:
I Models probabilities of labels given an example
I Purely discriminative: no attempt to model x
I Labels can be nominal and/or have structure
I Combines multiple sources of information correctly.
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A first log-linear model for dyadic prediction

For dyadic prediction, each example x is a dyad (r, c).

Feature functions must depend on both examples and labels.

Simplest choice:

fr′c′y′((r, c), y) = 1[r = r′, c = c′, y = y′].

Conceptually, re-arrange w into a matrix W y for each label y:

p(y|(r, c);w) ∝ exp(W y
rc).
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Factorizing interaction weights

Problem: 1[r = r′, c = c′, y = y′] is too specific to individual
(r′, c′) pairs.

Solution: Factorize the W y matrices. Write W y = ATB so

W y
rc = (αyr:)

Tβyc: =
K∑
k=1

αyrkβ
y
ck

For each y, each user and movie has a vector of values
representing characteristics that predict y.

I In practice, a single vector of movie characteristics suffices:
βyc = βc

I The characteristics predicting that a user will rate 1 star versus
5 stars are different.
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Incorporating side-information

If a dyad (r, c) has a vector src ∈ Rd of side-information, define

p(y|(r, c);w) ∝ exp((αyr)
Tβyc + (vy)T src).

Multinomial logistic regression with src as feature vector.
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Incorporating side-information - II

What if features are only per-user ur or per-movie mc?

Näıve solution: Define src = [ur mc].
I But then all users have the same rankings of movies.

Better: Apply bilinear model to user and movie features

p(y|(r, c);w) ∝ exp((αyr)
Tβyc + uTr V

ymc).

The matrix V y consists of weights on cross-product features.

34 / 71



The LFL model: definition

Resulting model with latent and explicit features:

p(y|(r, c);w) ∝ exp((αyr)
Tβyc + (vy)T src + uTr V

ymc)

αyr and βyc are latent feature vectors in RK .
I K is number of latent features

Practical details:
I Fix a base class for identifiability.
I Intercept terms for each user and movie are important.
I Use L2 regularization.
I Train with stochastic gradient descent (SGD).
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Unordered versus numerical labels

For unordered ratings, predict the most probable, and train to
optimize log likelihood.

Not desirable for numerical ratings:
I Difference between 1 and 5 6= difference between 4 and 5

Better: Predict

E[y] =

|Y|∑
y=1

y · p(y|(r, c);w)

and optimize mean squared error MSE.
I The expectation E[y] is a summary function.
I A standard latent feature model is limited to one factorization

for all rating levels.
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Assessing uncertainty

The variance measures the uncertainty of a prediction.

For numerical ratings

E[y2]−(E[y])2 =
∑
y

y2 ·p(y|(r, c);w)−

(∑
y

y · p(y|(r, c);w)

)2

Can be combined with business rules, e.g. if confidence in
predicted link < cost threshold then do not run expensive
experiment.

37 / 71



Experimental goals

Show ability to
I Handle unordered labels for multiclass link prediction
I Exploit numerical structure of labels for collaborative filtering
I Incorporate side-information in a cold-start setting.

Later:
I More detailed study of link prediction
I Complementarity of explicit and latent features.
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Multiclass link prediction
The Alyawarra dataset has kinship relations {brother, sister,
father, . . . } between 104 people.

LFL outperforms Bayesian models, even infinite ones.
I MMSB, IRM assume interactions set by cluster membership.
I IBP has binary latent features.

Bayesian averaging over multiple models does not add power.
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Collaborative filtering

MovieLens (6040 users, 3952 movies, 1M ratings of 1-5 stars)

EachMovie (36,656 users, 1628 movies, 2.6M ratings of 1-6
stars)

LFL model is more general, more accurate, and faster than
maximum margin matrix factorization [Rennie and Srebro, 2005].
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Measuring uncertainty
Estimated uncertainty correlates with observed test set errors
and average rating of movie. For MovieLens:

0 0.5 1 1.5 2
0

1
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3

Estimated stdev

M
A

E

Lowest variance Highest variance
Kazaam Grateful Dead

Lawnmower Man 2: Beyond Cyberspace The Rescuers
Problem Child 2 Prizzi’s Honor

Meatballs III Homeward Bound: The Incredible Journey
Pokemon the Movie 2000 The Fly
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Side-information solves the cold-start problem

Three scenarios on the 100K MovieLens dataset:
I Standard: No cold-start for users or movies
I Cold-start users: Randomly discard ratings of 50 users
I Cold-start users + movies: Randomly discard ratings of 50

users and ratings for all their test set movies also.
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Link prediction

Link prediction: Given a partially observed graph, predict
whether or not edges exist for the unknown-status pairs.

?

?

?

?

Unsupervised (non-learning) scores are classical models
I e.g. common neighbors, Katz measure, Adamic-Adar.

Technically, structural rather than temporal link prediction.

44 / 71



Latent feature approach

Each node’s identity influences its linking behavior.

Nodes also can have side-information predictive of linking.
I For author-author linking, side-information can be words in

authors’ papers.

Edges may also possess side-information.
I For country-country conflict, side-information is geographic

distance, trade volume, etc.

Identity determines latent features.
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Latent feature approach

LFL model for binary link prediction has parameters
I latent vectors αi ∈ Rk for each node i
I scaling factors Λ ∈ Rk×k for asymmetric graphs
I weights W ∈ Rd×d for node features
I weights v ∈ Rd′ for edge features.

Given node features xi and edge features zij

Ĝij = p(edge|i, j) = σ(αTi Λαj + xTi Wxj + vT zij)

for sigmoid function σ(x) = 1/(1 + exp(−x))

Minimize regularized training loss:

min
α,Λ,W,v

∑
(i,j)∈T

`(Gij , Ĝij) + Ω(α,Λ,W, v)
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Challenge: Class imbalance

Vast majority of node-pairs do not link with each other.

AUC (area under ROC curve) is standard performance measure.

For a random pair of positive and negative examples, AUC is the
probability that the positive one has higher score.

I Not influenced by relative size of positive and negative classes.

Model trained to maximize accuracy is potentially suboptimal.
I Sampling is popular, but loses information.
I Weighting is merely heuristic.
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Optimizing AUC

Empirical AUC counts concordant pairs

A ∝
∑

p∈+,q∈−

1[fp − fq > 0]

Train latent features to maximize approximation to AUC:

min
α,Λ,W,v

∑
(i,j,k)∈D

`(Ĝij − Ĝik, 1) + Ω(α,Λ,W, v)

where D = {(i, j, k) : Gij = 1, Gik = 0}.
With stochastic gradient descent, a fraction of one epoch is
enough for convergence.
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Experimental comparison

Compare
I latent features versus unsupervised scores
I latent features versus explicit features.

Datasets from applications of link prediction:
I Computational biology: Protein-protein interaction network,

metabolic interaction network
I Citation networks: NIPS authors, condensed matter physicists
I Social phenomena: Military conflicts between countries,

U.S. electric power grid.
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Link prediction datasets

Dataset Nodes |T+| |T−| +ve:−ve ratio Average degree
Prot-Prot 2617 23710 6,824,979 1 : 300 9.1
Metabolic 668 5564 440,660 1 : 80 8.3
NIPS 2865 9466 8,198,759 1 : 866 3.3
Condmat 14230 2392 429,232 1 : 179 0.17
Conflict 130 320 16580 1 : 52 2.5
PowerGrid 4941 13188 24,400,293 1 : 2000 2.7

Protein-protein interaction data from Noble. Each protein has a 76 dimensional explicit
feature vector.

Metabolic pathway interaction data for S. cerevisiae provided in the KEGG/PATHWAY
database [ISMB]. Each node has three feature sets: a 157 dimensional vector of
phylogenetic information, a 145 dimensional vector of gene expression information, and a
23 dimensional vector of gene location information.

NIPS: Each node has a 14035 dimensional bag-of-words feature vector, the words used
by the author in her publications. LSI reduces the number of features to 100.

Co-author network of condensed-matter physicists [Newman].

Military disputes between countries [MID 3.0]. Each node has 3 features: population,
GDP and polity. Each dyad has 6 features, e.g. the countries’ geographic distance.

US electric power grid network [Watts and Strogatz].
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Latent features versus unsupervised scores

Latent features are more predictive of linking behavior.
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Learning curves

Unsupervised scores need many edges to be known.

Latent features are predictive with fewer known edges.

For the military conflicts dataset:
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Latent features combined with side-information

Difficult to infer latent structure more predictive than
side-information.

But combining the two can be beneficial:
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What is affinity?

Affinity may be called similarity, relatedness, compatibility,
relevance, appropriateness, suitability, and more.

I Two OCR images are similar if they are versions of the same
letter.

I Two eHarmony members are compatible if they were mutually
interested in meeting.

I An advertisement is relevant for a query if a user clicks on it.
I An action is suitable for a state if it has high long-term value.

Affinity can be between items from the same or different spaces.

Affinity can be binary or real-valued.
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The propensity problem

Idea: To predict affinity, train a linear function

f(u, v) = w · [u, v].

Flaw: Ranking of second entities v is the same regardless of u:

f(u, v) = w · [u, v] = wu · u+ wv · v.

The ranking of v entities is by the dot product wv · v.
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Bilinear representation

Proposal: Represent affinity of vectors u and v with a function

f(u, v) = uTWv

where W is a matrix.

Different vectors u give different ranking vectors w(u) = uTW .
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Learning W

A training example is 〈u, v, y〉 where y is a degree of affinity.

Let u and v have length m and n. Then

uTWv =
m∑
i=1

n∑
j=1

(W ◦ uvT )ij = vec(W ) · vec(uvT ).

Idea: Convert 〈u, v, y〉 into 〈vec(uvT ), y〉.
Then learn vec(W ) by standard linear regression.
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What does W mean?

Each entry of uvT is the interaction of a feature of the u entity
and a feature of the v entity.

Labels may be real-valued or binary: y = 1 for affinity, y = 0 for
no affinity.

Can use regularization, logistic regression, linear SVM, and more.

Can maximize AUC.
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Re-representations

Add a constant 1 to u and v to capture propensities.

If u and v are too short, expand them, e.g. change u to uuT .

If u and/or v is too long, define W = ABT where A and B are
rectangular.

If W is square, define W = ABT +D where D is diagonal.

But finding the optimal representation ABT or ABT +D is not
a convex problem.
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Affinities versus distances

Learning affinity is an alternative to learning a distance metric.

The Mahalanobis metric is d(u, v) =
√

(u− v)TM(u− v)
where M is positive semidefinite.

Learning affinities is more general.
I Distance is defined only if u and v belong to the same space.
I In information retrieval, u can be a query in one language and v

can be a relevant document in a different language.

Affinity is not always symmetric.
I Because queries are shorter than documents, the relatedness of

queries and documents is not symmetric.
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Learning Mahalanobis distance

Squared Mahalanobis distance is d2(u, v) =

(u− v)TM(u− v) =
n∑
i=1

n∑
j=1

(M ◦ (u− v)(u− v)T )ij

= vec(M) · vec((u− v)(u− v)T ).

So M can be learned by linear regression, like W .

The outer product (u− v)(u− v)T is symmetric, so M is
symmetric also.

Existing methods for learning Mahalanobis distance are less
efficient.
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Experiments with eHarmony data

The training set has 506,688 labeled pairs involving 274,654
members of eHarmony, with 12.3% positive pairs.

The test set has 439,161 pairs involving 211,810 people, with
11.9% positive pairs.

Previously used in [McFee and Lanckriet, 2010].
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Visualization
Positive training pairs from the U.S. and Canada.
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Each line segment connects the locations of two individuals in
the eHarmony training set who are compatible. 64 / 71



Data representations

Each user is a vector of length d = 56. “Propensity” uses
vectors of length 2d+ 1

“Interaction” uses length 3d+ 1 by adding uivi for i = 1 to d.

“Extended interaction” adds nonlinear transformations of
components ui and vi.

“Bilinear” uses vectors of length d2.

“Mahalanobis” uses vectors of length d(d+ 1)/2 = 1597.

Extended bilinear and Mahalanobis representations use quadratic
vectors concatenated with extended interaction vectors.
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Experimental details

Training uses linear regression with an intercept.

Targets are 0 or 1. Features are z-scored.

L2 regularization with strength one.

For comparability, id numbers, latitudes, and longitudes are
ignored.
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Experimental results

Training and test AUC for alternative representations.

training test time
representation AUC AUC (s)
MLR-MAP 0.624
propensity 0.6299 0.6354 14
interaction 0.6410 0.6446 20
extended interaction 0.6601 0.6639 64
Mahalanobis 0.6356 0.6076 379
extended Mahalanobis 0.6794 0.6694 459
bilinear 0.6589 0.6374 973
extended bilinear 0.6740 0.6576 1324

The large test set makes differences statistically significant.

67 / 71



Observations

Bilinear regression is tractable. Training with a half million
examples of expanded length 3000 takes 22 minutes.

Learning propensity is a strong baseline, with higher accuracy
than the best previous method.

Bilinear affinity gives higher accuracy than Mahalanobis distance.

A nonlinear extended version of Mahalanobis distance is best
overall.
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If time allowed

Scaling up to Facebook-size datasets: egocentric subgraphs.
Better AUC than supervised random walks
[Backstrom and Leskovec, 2011].

Predicting labels for nodes, e.g. who will play Farmville
(within network classification, collective classification).
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Conclusions

Many prediction tasks involve pairs of entities:
collaborative filtering, friend suggestion,
compatibility forecasting, reinforcement learning, and more.

Edge prediction based on learning latent features is more
accurate than prediction based on any graph-theoretic formula.

The most successful methods combine latent features with
explicit features of nodes and of dyads.
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