A Rendezvous-based Paradigm for Analysis of Solicited and Unsolicited Traffic

DUST 2012
May 15, 2012

David Plonka
&
Paul Barford
{plonka,pb}@cs.wisc.edu
Outline

• Rendezvous-based Traffic Analysis
 – What is it? Why use it?
 – a DNS rendezvous case study involving office and residential “solicited” traffic

• Darkspace Rendezvous Mechanisms
 – unsolicited and passively solicited traffic

• TreeTop
 – a DNS rendezvous-based analysis tool
 [Plonka & Barford, IMC 2009, SATIN 2011, work in progress]
 – flow export with rendezvous annotations
 – IPv6 performance by service names
Rendezvous-based Traffic Analysis?

- Traffic classification and analysis has focussed on target traffic features (IP headers, DPI, etc.)
- However, Internet hosts learn IP addresses by some *rendezvous* mechanism, e.g.:
 - By static configuration (IP addrs in config files)
 - The Doman Name System (DNS)
 - Application-specific mechanisms (URLs, p2p)
- Inform traffic analysis by considering, “How does this host know this IP address?” rather than simply, “With what IP address did this host interact?”
Why Focus on Rendezvous?

rendezvous, meaning hosts and services “present themselves”

- For standard protocols, rendezvous information is not private and is of low-volume
 - Separate and separable from private payloads
 - Can be monitored in situations where target traffic is high-volume, sampled, or encrypted

- Rendezvous info can indicate when other analysis or classification techniques are effective and not
 - e.g., port-based classification

[Kim, et al., 2008] [Plonka & Barford, 2011]
Rendezvous-based Traffic Classification

rendezvous, meaning “present yourselves”

• **Hypothesis**: We can inform and improve traffic classification by considering, “How does this host know that peer IP address?”

• **DNS**: Internet hosts regularly use the DNS to find remote IP addresses of the hosts with which they might interact.
 – It is an *easily separable* standard, “clear text” protocol.
DNS Rendezvous: (1) Query
DNS Rendezvous: (2) Response

A 192.0.2.1
DNS Rendezvous: (3) Outbound
DNS Rendezvous: (4) Inbound
Traffic Observation Points

Internet host

DNS server

client
Traffic Observation Points
Traffic Observation Points

DPI, low-volume
Traffic Observation Points

SPI, high-volume

DPI, low-volume
Characteristics of Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Date</th>
<th>Day</th>
<th>Duration</th>
<th>Clients</th>
<th>Unique NOERROR FQDNs</th>
<th>DNS Reply Pkts</th>
<th>Average DNS Reply Utilization</th>
<th>Average Wide-Area Outbound / Inbound Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>2009-04-17</td>
<td>Fri</td>
<td>24h</td>
<td>614</td>
<td>19.4 K</td>
<td>560 K</td>
<td>12.2 Kbps</td>
<td>753 Kbps / 5.66 Mbps</td>
</tr>
<tr>
<td>Residential</td>
<td>2009-04-17</td>
<td>Fri</td>
<td>24h</td>
<td>9,819</td>
<td>(5,344)</td>
<td>(143 K)</td>
<td>15.7 M</td>
<td>360 Kbps / 244 Mbps / 276 Mbps</td>
</tr>
</tbody>
</table>

![Graph showing local time of day vs. bits per second, with separate lines for outbound and inbound rates.](image1)

![Graph showing local time of day vs. bits per second, with separate lines for outbound and inbound rates.](image2)
Target Traffic Classification: Port-based method
Residential: Domain Popularity
Office Target Traffic Classification: “named” and “unnamed”
Residential Target Traffic Classification: “named” and “unnamed”
Residential Target Traffic Classification: “named” by popular domains
Host Profiling and Reputation based on Rendezvous Information

Venn Diagram:
- **Torrent**
 - Within Game: 13
 - Outside Game: 303
 - Total: 417 (7.5%)
- **Talk**
 - Within Game: 20
 - Outside Game: 626
 - Total: 717 (12.8%)
- **Game**
 - Total: 226 (4.0%)
 - Total intersections: 58
 - Total outside intersections: 303 + 626 + 226 - 58 = 1097
Residential Hosts Classification by P2P Host Profile (1 day)

- Torrent: 417 (7.5%) - 303
- Talk: 717 (12.8%) - 626
- Game: 226 (4.0%) - 150

Intersection counts: 58, 13, 20
“unnamed” Target Traffic by P2P Profile

Torrent (67.1%) 37.8%

2.6%

4.5%

5.9%

22.2%

Talk (20.0%) 7.0%

Game (34.9%) 2.3%
Results Summary: Traffic Classified (% bytes)

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Port-known</th>
<th>DNS-named and Port-known</th>
<th>DNS-named</th>
<th>DNS-named and DNS-Profiled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office Out</td>
<td>93.9%</td>
<td>80.5%</td>
<td>81.8%</td>
<td>91.9%</td>
</tr>
<tr>
<td>Office In</td>
<td>96.6%</td>
<td>91.8%</td>
<td>93.2%</td>
<td>95.4%</td>
</tr>
<tr>
<td>Residential Out</td>
<td>18.6%</td>
<td>6.2%</td>
<td>6.7%</td>
<td>83.5%</td>
</tr>
<tr>
<td>Residential In</td>
<td>76.9%</td>
<td>58.3%</td>
<td>67.9%</td>
<td>88.2%</td>
</tr>
</tbody>
</table>
Rendezvous in Darkspace/Grayspace?

- **Darkspace and Unsolicited**: a host uses some technique to choose remote/peer IP addresses
 - **Algorithm**, e.g., scanning a contiguous set of IP addresses in series, choosing IP addresses at random
 - **Bug**, e.g. D-link products connect to 45.52.84.48, the 7-bit string “-4T0”, believed to be a stray value left in an uninitialized 32-bit integer meant to store an SMTP server's IP address [Yegneswaran, Barford, Plonka, 2004]
 - **Misconfiguration** or stale configuration, e.g., SNMP traps to various 45/8 addresses from Interop events
 - IP prefixes become **encumbered** by legacy roles
TreeTop:
Rendezvous-annotated Flow Export
TreeTop: radix tries and domain trees
[3 private slides redacted]
Discussion

● In what circumstances can we trust rendezvous information for traffic classification or host profiling/reputation?

● Tap rendezvous methods other than the DNS; e.g., application-specific methods (WWW, P2P); are they discoverable, separable and clear?

● Should we alter or invent rendezvous protocols to better inform classification and packet treatment?

● Is rendezvous a useful unifying analysis concept?
A Rendezvous-based Paradigm for Analysis of Solicited and Unsolicited Traffic

FIN

David Plonka
&
Paul Barford
{plonka, pb}@cs.wisc.edu