A Rendezvous-based Paradigm for Analysis of Solicited and Unsolicited Traffic

DUST 2012 May 15, 2012

David Plonka

& Paul Barford {plonka,pb}@cs.wisc.edu

Outline

- Rendezvous-based Traffic Analysis
 - What is it? Why use it?
 - a DNS rendezvous case study involving office and residential "solicited" traffic
- Darkspace Rendezvous Mechanisms

 unsolicited and passively solicited traffic
- TreeTop
 - a DNS rendezvous-based analysis tool
 [Plonka & Barford, IMC 2009, SATIN 2011, work in progress]
 - flow export with rendezvous annotations
 - IPv6 performance by service names

Rendezvous-based Traffic Analysis?

- Traffic classification and analysis has focussed on target traffic features (IP headers, DPI, etc.)
- However, Internet hosts learn IP addresses by some *rendezvous* mechanism, e.g.:
 - By static configuration (IP addrs in config files)
 - The Doman Name System (DNS)
 - Application-specific mechanisms (URLs, p2p)
- Inform traffic analysis by considering, "How does this host know this IP address?" rather than simply,

"With what IP address did this host interact?"

Why Focus on Rendezvous?

rendezvous, meaning hosts and services "present themselves"

- For standard protocols, rendezvous information is not private and is of low-volume
 - Separate and separable from private payloads
 - Can be monitored in situations where target traffic is high-volume, sampled, or encrypted
- Rendezvous info can indicate when other analysis or classification techniques are effective and not
 - e.g., port-based classification
 [Kim, et al., 2008] [Plonka & Barford, 2011]

Rendezvous-based Traffic Classification

rendezvous, meaning "present yourselves"

- Hypothesis: We can inform and improve traffic classification by considering,
 "How does this host know that peer IP address?"
- **DNS**: Internet hosts regularly use the DNS to find remote IP addresses of the hosts with which they might interact.
 - It is an *easily separable* standard, "clear text" protocol.

DNS Rendezvous: (2) Response

DNS Rendezvous: (3) Outbound

DNS Rendezvous: (4) Inbound

Traffic Observation Points

Traffic Observation Points

Characteristics of Data Sets

Γ	Data Set	Date	Day	Duration	Clients	Unique	DNS	Average	Average Wide-Area
						NOERROR	Reply	DNS Reply	Outbound / Inbound
L						FQDNs	Pkts	Utilization	Utilization
	Office	2009-04-17	Fri	24h	614	19.4 K	560 K	12.2 Kbps	753 Kbps / 5.66 Mbps
Γ	Residential	2009-04-17	Fri	24h	9,819		15.7 M	360 Kbps	244 Mbps / 276 Mbps
L					(5,344)	(143 K)			

Target Traffic Classification: Port-based method

Residential: Domain Popularity

Office Target Traffic Classification: "named" and "unnamed"

Residential Target Traffic Classification: "named" and "unnamed"

Residential Target Traffic Classification: "named" by popular domains

Host Profiling and Reputation based on Rendezvous Information

"unnamed" Target Traffic by P2P Profile

Results Summary: Traffic Classified (% bytes)

Data Set	Port-known	DNS-named	DNS-	DNS-named
		and	named	and
		Port-known		DNS-Profiled
Office Out	93.9%	80.5%	81.8%	91.9%
Office In	96.6%	91.8%	93.2%	95.4%
Residential Out	18.6%	6.2%	6.7%	83.5%
Residential In	76.9%	58.3%	67.9%	88.2%

Rendezvous in Darkspace/Grayspace?

- **Darkspace and Unsolicited**: a host uses some technique to choose remote/peer IP addresses
 - Algorithm, e.g., scanning a contiguous set of IP addresses in series, choosing IP addresses at random
 - Bug, e.g. D-link products connect to 45.52.84.48, the 7-bit string "-4T0", believed to be a stray value left in an uninitialized 32-bit integer meant to store an SMTP server's IP address [Yegneswaran, Barford, Plonka, 2004]
 - Misconfiguration or stale configuration, e.g., SNMP traps to various 45/8 addresses from Interop events
 - IP prefixes become **encumbered** by legacy roles

TreeTop: Rendezvous-annotated Flow Export

[3 private slides redacted]

Discussion

- In what circumstances can we trust rendezvous information for traffic classification or host profiling/reputation?
- Tap rendezvous methods other than the DNS;
 e.g., application-specific methods (WWW, P2P);
 are they discoverable, separable and clear?
- Should we alter or invent rendezvous protocols to better inform classification and packet treatment?
- Is rendezvous a useful unifying analysis concept?

A Rendezvous-based Paradigm for Analysis of Solicited and Unsolicited Traffic

FIN

