

Google

A Traffic Study to Interleaved Dark Space

Markus De Shon (mdeshon)

Agenda

Methodology

Results

Discussion on Data Sharing

Methodology

Flow collection at Google

- Sampled sFlow and Netflow v{5,9} collected at network devices
- Written as annotated flow records to Google log infrastructure
- Google tools available for analysis
 - \circ Mapreduce for batch processing
 - \circ Near-real-time processing pipeline
 - Time series anomaly detection pipeline, with event classification and alerting

Darkspace at Google

- Some IP spaces allocated but unused (likely temporary)
- Most allocated IP space well-populated
- Some netblocks unused within larger populated blocks
- Allocated IP space identified from public IPs listed in internal network allocation database

Use inbound flow data instead? (messy)

- Unused space identified empirically, no outbound flows from a /24 in the last X days
- \rightarrow Must keep dynamically updated list of unused IP spaces.

When traffic is observed from a /24, remove from list. Batch runs over X days to identify new unused spaces.

Entropy timeseries

Calculate (packet count-weighted) information entropy by

- sIP
- sPort
- dIP
- dPort
- cf. Zseby FloCon 2012
 - Also calculated Bpp, not that useful so far...

Scalable counting by unique keys in first Mapreduce Entropy sums in second Mapreduce All darkspace traffic aggregated, single timeseries per entropy

Results

Timeseries of full time span

dIP

sPort

dIP

sPort

dPort

2012-04-06 12:00

sIP

2012-04-12 04:00

sIP 8 -08.0 22:00 22:30 23:00 23:30 00:00

dIP

sPort

dPort

dIP

2012-04-23 15:00

scan

dIP

sPort

dPort

2012-04-25 12:00

sIP

- Maintain a constantly updated map of active/dark network addresses
 - Darkspace telescope
 - Scan detection
- Integration of darkspace into near-real-time flow processing pipeline
- Study our IPv6 darkspace?
 - Huston NANOG 50 paper shows almost entirely misconfigured traffic, 100s of kbps across a /12
 Will IPv6 darkspace be interesting?

Data sharing discussion

Needs for data sharing

No user data (requirement)

• Perfect identification/maintenance of dark IP space Don't leak IP usage info (requirement)

- Nonreversible (?) map of dark IPs to reported IPs, OR
- No destination IPs reported

Needs for data sharing (2)

External source IP anonymization?

- Some kind of privacy-preserving query mechanisms... IANACrypto, but some system with features:
 - Alice delivers f(A), Bob delivers g(B)
 - Eve can perform Test(A==B) that does not reveal A or B, but permits aggregation across data sources to calculate total entropies
- Trusted sharing (e.g. SIE ISC)
- Other privacy-preserving designs (e.g. DEMONS) Maximize aggregation (desirable)
 - Share aggregate counts with one-way keys
 - Perform entropy calculations in the sharing environment

Thank you!

Questions and Answers

