

Darknets for Security Monitoring @ Polito

Idilio Drago SmartData@PoliTo https://smartdata.polito.it

Sql injection DDoS Drive-by-download Traffic monitoring Passive Trad Cybersecurit: Network management Cryptolocker Phishing Ransonware BGP Hijacking

SmartData@PoliTo

Collect Data

- Active crawling
 - Web pages
 - Social networks (FB, Instagram, tripadvisor...)
- Passive probes
 - Up to 100 Gb/s with off-the-shelf hw
 - 5+ years of historical logs from ISP and campus networks
- Darknets
 - From 2 different countries

• Hon Generation

Process Data

- Supervised ML
 - trees, forests, NN, GAN,...
 - For traffic classification
 - For malware detection
 - For user characterization
 - ...

• ...

Acquisitio

- Unsupervised ML
 - Clustering, Rule Mining
 - For anomaly detection
 - For lowering complexity

Solve problems

- System characterization
 - How does [dropbox|Skype|YouTube|...] work?
- User Characterization
 - How does Alice use [Dropbox|Instagram|YouTub e]?
- Cybersecurity
 - How does Trudy abuse of [DNS, servers, cloud, news...]

Analysis

Storage

SmartData@PoliTo

Collect Data

- Active crawling
 - Web pages
 - Social networks (FB, Instagram, tripadvisor...)
- Passive probes
 - Up to 100 Gb/s with off-the-shelf hw
 - 5+ years of historical logs from ISP and campus networks
- Darknets
 - From 2 different countries

• Hon Generation

Process Data

- Supervised ML
 - trees, forests, NN, GAN,...
 - For traffic classification
 - For malware detection
 - For user characterization
 - ...

• ...

- Unsupervised ML
 - Clustering, Rule Mining
 - For anomaly detection
 - For lowering complexity

Solve problems

- System characterization
 - How does [dropbox|Skype|YouTube|...] work?
- User Characterization
 - How does Alice use [Dropbox|Instagram|YouTub e]?
- Cybersecurity
 - How does Trudy abuse of [DNS, servers, cloud, news...]

1S

GOAL: make it as **automatic** as possible

Internet Traffic Monitoring @ Polito

- Statistical Analysis at IP/UDP/TCP
 - Passive inspection of packet headers
 - Rebuild bidirectional flow connections
 - Features real-time analysis (pcap, DAG, DPDK)
 - Offers persistent and scalable monitoring

- Statistical Analysis at IP/UDP/TCP
 - Passive inspection of packet headers
 - Rebuild bidirectional flow connections
 - Features real-time analysis (pcap, DAG, DPDK)
 - Offers persistent and scalable monitoring

- Statistical Analysis at IP/UDP/TCP
 - Passive inspection of packet headers
 - Rebuild bidirectional flow connections
 - Features real-time analysis (pcap, DAG, DPDK)
 - Offers persistent and scalable monitoring

- Statistical Analysis at IP/UDP/TCP
 - Passive inspection of packet headers
 - Rebuild bidirectional flow connections
 - Features real-time analysis (pcap, DAG, DPDK)
 - Offers persistent and scalable monitoring

- Statistical Analysis at IP/UDP/TCP
 - Passive inspection of packet headers
 - Rebuild bidirectional flow connections

Edge

Router

Inte

Clie

- Features real-time analysis (pcap, DAG, DPDK)
- Offers persistent and scalable monitoring

Externa

Servers

Istat

"Cost" of a broadband

subscriber per day

7

Trevisan, M.; Giordano, D.; Drago, I.; Mellia, M.; Munafo', M., Five years at the

adaa in $\lambda CM CONFVT 2019$

Protocol usage over the years

Protocol usage over the years

download

Protocol usage over the years

download

 These figures miss what is actual users' traffic and what is unsolicited/background/malicious traffic

Unanswered incoming traffic

Unanswered incoming traffic

•Low volume, high numbers of flows
•E.g., failed "TCP handshakes"

- Low volume, high numbers of flows
- •E.g., failed "TCP handshakes"
- Contributing these logs to the community is very hard
 - Even for traffic in our university network
 - Even anonymized
 - Users' routine on-line/off-line
 - Scanning if host is active

- Low volume, high numbers of flows
- •E.g., failed "TCP handshakes"
- Contributing these logs to the community is very hard
 - Even for traffic in our university network
 - Even anonymized
 - Users' routine on-line/off-line
 - Scanning if host is active

Yet letting people perform analysis in our premises is generally fine

Darknets @Polito

Internet Telescope @Polito

Internet in the promotion ... virtualtelescope.eu

iTelescope.Net itelescope.net

Robotic Telescopes for Educational Outreach insightobservatory.com

Robotic Telescopes for Ed... insightobservatory.com

Online Telescopes - Uni... universetoday.com

indiamart.com

rnet escope ect

perthcactus.com

SPIRIT: An eye on the skies of Perth ...

The UCSD Network Telescope caida.org

RANDOM PRO

RANDOM PROBES

Internet in the promotion ... virtualtelescope.eu

iTelescope.Net itelescope.net

Robotic Telescopes for Educational Outreach insightobservatory.com

Robotic Telescopes for Ed... insightobservatory.com

Online Telescopes - Uni... universetoday.com

indiamart.com

rnet escope ect

perthcactus.com

SPIRIT: An eye on the skies of Perth ...

The UCSD Network Telescope caida.org

RANDOM PRO

RANDOM PROBES

. . .

From ISPs (and our IT) we get questions such:

- What is this weird activity on port X ?
- Are there hosts in my network joining botnet Z ?
- Anyone vulnerable to Y ?
- Latest one: Is my network sending traffic to darknets? Which nodes?

. . .

From ISPs (and our IT) we get questions such:

- What is this weird activity on port X ?
- Are there hosts in my network joining botnet Z ?
- Anyone vulnerable to Y ?
- Latest one: Is my network sending traffic to darknets? Which nodes?
- With passive TSTAT traces we perform post-mortem analysis
 - Often too little information for stealth cases (not the big scans)

1. . .

From ISPs (and our IT) we get questions such:

- What is this weird activity on port X ?
- Are there hosts in my network joining botnet Z ?
- Anyone vulnerable to Y ?
- Latest one: Is my network sending traffic to darknets? Which nodes?
- With passive TSTAT traces we perform post-mortem analysis
 - Often too little information for stealth cases (not the big scans)

Darknets and Honeypots

- Get context on unsolicited traffic we see in production
- Transfer knowledge from our lab to other networks (!?)
Data sources

Data sources

Internet darknet @Polito

- GaRR Autonomous System
- Few IP addresses now 3 x /24 IPv4 (to be expanded in GaRR)
- Long-term: any unused IP addresses @polito (even temporarily)
- IP addresses recently used in production

Data sources

Internet darknet @Polito

- GaRR Autonomous System
- Few IP addresses now 3 x /24 IPv4 (to be expanded in GaRR)
- Long-term: any unused IP addresses @polito (even temporarily)
- IP addresses recently used in production
- Internet darknet @RNP (BR)
 - ■/19 IPv4
 - **•**/33 + /48 IPv6
 - IPv4 allocated to production traffic few years ago

IPv6 (baseline)

- e.g., reverse lookup: yhu-ca.caida.ebox.ca, caida-gw.ip6.gtt.net
- Big peaks: researchscanner100.eecs.berkeley.edu (sending TCP SYN packets)

IPv6 (baseline)

- e.g., reverse lookup: yhu-ca.caida.ebox.ca, caida-gw.ip6.gtt.net
- Big peaks: researchscanner100.eecs.berkeley.edu (sending TCP SYN packets)

IPv4 sanity checks

The IPv4 darknets:

- •/15 in the Netherlands (baseline)
 (30 GB of PCAPs/day)
- /19 in Brazil (2.5 GB of PCAPs/day)
- 3 /24 in Italy
 (420 MB of PCAPs/day)

when comparing darknets, extract samples of similar size
(# IP addresses)

Methodology

- Get data from a large and more established darknet (@SurfNet)
- Compare traffic among the darknets
- Check if differences are inline with the literature
 - CAIDA/Merit's data [*]

[*] K. Benson, A. Dainotti, K. Claffy, A. C. Snoeren, and M. Kallitsis, "Leveraging Internet Background Radiation for Opportunistic Network Analysis," in Proc. of the IMC, 2015, pp. 423-436.

Number of distinct source IPs Number of packets

all darknets

The most active sources are similar

Sources - ASes

Top-talkers (at least 10 flows in 1-hour bin)

	BR		NL			IT		
	pkts			pkts			pkts	
ASN	(%)	IPs	ASN	(%)	IPs	ASN	(%)	IPs
49453	14.8	8	49505	10.57	15	43350	22.18	12
57043	10.72	15	202325	9.94	11	204428	7.17	24
202325	6.5	12	204428	7.52	20	58271	7.05	22
58271	5.18	19	58271	6.9	19	51852	6.69	5
204428	3.74	18	201912	5.8	8	57043	6.28	16

Very few IP addresses produce the largest amount of traffic

Most active ASes are visible in **all** darknets (mostly from **RU/CN/BG**)

Per-port breakdown

20

Per-port breakdown

How spread are the sources?

Jaccard Index to measure similarity between the traffic sources:

 $set(ASes_{BR}) \cap set(ASes_{NL})$ $set(ASes_{BR}) \cup set(ASes_{NL})$

Per-port breakdown

How spread are the sources?

At least half of the source ASes are always visible on both darknets

TCP targets tend to be hit by **more distributed sources**. Some exceptions

Major properties follow those reported in literature Destination ports are similar, packets coming from a significant number of ASes and almost all countries

• Major properties follow those reported in literature

- Destination ports are similar, packets coming from a significant number of ASes and almost all countries
- Similar volume of packets (per darknet address) in the 3 deployments
 - Dominated by the heavy hitters, which are similar

- Major properties follow those reported in literature
 - Destination ports are similar, packets coming from a significant number of ASes and almost all countries
- Similar volume of packets (per darknet address) in the 3 deployments
 - Dominated by the heavy hitters, which are similar
- More diversity IP sources in the BR/IT darknets
 - IP addresses used in production more recently
 - Few packets sent by large number of sources (tail of popularity dist.)

- Major properties follow those reported in literature
 - Destination ports are similar, packets coming from a significant number of ASes and almost all countries
- Similar volume of packets (per darknet address) in the 3 deployments
 - Dominated by the heavy hitters, which are similar
- More diversity IP sources in the BR/IT darknets
 - IP addresses used in production more recently
 - Few packets sent by large number of sources (tail of popularity dist.)
- BR and IT darknet are operative since Sept 2018
- Data can be shared for research purposes

Beyond the darknets

Getting even more dust

HoneyPort

 Deploying flexible honeypots for adding context to darknet traces

•Why:

- We would like to add meta-data to traffic as much as we can, e.g.,
 - These packets are someone scanning with tool X
 - This is MIRAI botnet
 - In production: these packets were a follow up of that scan
- We are still in explorative phase, not clear how far we can go

Goals and methodology

•Understand why someone is contacting us

- Engage attackers
- Produce fingerprints
- Seed models to classify the packets

Low-interaction honeypots (specific tasks)

- •e.g., Save first packets after TCP/TLS handshake
- e.g., COWRIE, a ssh honeypot collecting binaries and passwords

Goals and methodology

• Understand why someone is contacting us

- Engage attackers
- Produce fingerprints
- Seed models to classify the packets

Low-interaction honeypots (specific tasks)

- •e.g., Save first packets after TCP/TLS handshake
- e.g., COWRIE, a ssh honeypot collecting binaries and passwords
- ► .

High-interaction honeypots based on virtualization

Containers/VMs with realistic setup for high interaction
 Build on top of virtual machines and virtual networks

Tones of honeypot options!

Tones of honeypot options!

Table III

CHRONOLOGICAL OVERVIEW AND CLASSIFICATION OF SERVER HONEYPOT SOFTWARE BY THEIR INTERACTION LEVEL TYPE. (+) INDICATES SOME ADDITIONAL SERVICES, (++) INDICATES MANY ADDITIONAL SERVICES, (*) MARKS VAGUE TIMESTAMPS.

8	Software	Maintenance		Free	Focus			
Typ		First	Last		Services / Applications	Design / Details		
	DTK 31	1997	1999	1	SMB, SSH, DNS, FTP, Netstat(++)	implement many known vulnerabilities		
	BOF 32	1998	1999	- <u>-</u>	Back Orifice, Telnet, SMTP(+)	waste intruders time, easy deployment		
	NetFacane 42	1998	2002*	×	not specified	class C network emulation		
	CyberCop String [33	1999	1999	*	Teinet, FTP, SendMail, SNMP	emplaing different network devices		
	Specter 44	1999	2005	÷.	SMTP, FTP, HTTP and Telnet(+)	commercial deployment, decoy files		
	sinch her state 12 2002*		2002*	×.	dialop modern	war duling trapping		
	single-noneypot 145	2002	2002	٠,	au ports, our no creatanon	mere togging, KISS arenteeture		
	LoBres 100	2002	2003	×.	-N ments dati an emplotion	simple TCP territ ht SVNIACE		
	SMTR-4 199	2002	2003	·	CLETP	simple FCF tarph by STFEMER.		
	THP 46	2002	2003		SSH (dod), HTTP FTP	contistence honormat and real services		
	Inclusion 185	2002	2004	2	SMTP	delay man utilizing spon databases		
	Fake AP 119	2002	2005	-	802 11b AP beacons	no c wireless horevorts		
	HoneyBot 134	2002*	2007*	- 2	SSH. SMTP. FTP. HTML(++)	windows vulnerabilities and GUI		
	BigEve 8	2003	2003	2	HTTP. FTP	emplation of different web servers		
N.	Spanhole 59	2003	2003	1	SMTP	silent dropping of emails		
-	Spampot 60	2003	2003	1	SMTP	platform independence		
	HoneyPeri 36	2003	2003	1	HTTP, FTP, SMTP, Telnet(+)	extensibility by modules		
	Decoy Server 45	2003*	2003	×	SMTP, POP3	fake email server traffic		
	Smoke Detector 8	2003*	2004*	×	FTP, HTTP, IMAP, SSH, SMB(++)	honeypot as a hardware		
	NetBait 41	2003	2007*	×	not specified	honeypot as a service		
	HoneyD 28	2003	2008	1	HTTP, POP3, SMTP, FTP(+)	emulating heterogeneous networks		
	KFSensor 58	2003	2015	×	HTTP, SMTP, MSSQL, FTP(+)	commercial deployment of honeypots		
	SpanD 56	2003	2015*	1	SMTP	tarpit against sparn		
	HOACD 35	2004	2004	1	compare HoneyD	live bootable CD (HoneyD, Arpd)		
	ProxyPot 57	2004*	2004*	~	SMTP	email spammer identification		
	Impost 37	2004	2004	×.	all ports, but no entalation	full packet sniffing		
	Kojoney [53]	2005	2006	×.	SSH (shell activity)	first dedicated SSH honeypot		
	Mwcollect 53	2005	2009	×.	compare Nepenthes, Honeyirap	merging Nepenthes and Honeytrap		
	CERT CON	2005	2009	1	HUTP Anothe BUP MSSOL	capture worm paytoud		
	Honeyers [51]	2005	2015	2	HTML FTP(+) day analation	attacks via unknown nestocals		
hw	HoneyPoint 190	2006	2014	÷.	not specified	ICS/Scada, back tracking intruders		
	Dionaca 49	2009	2013	2	SMB, FTP, SIP, MYSOL(++)	nerenthes successor, carture revioad		
	Kippo 63	2009	2014	1	SSH (shell activity)	emplate entire shell interaction		
	Artemisa 73	2010	2011	1	VolP. SIP	Bluetooth Malware		
	bluepot 81	2010	2015	1	Bluctooth	Bluetooth Malware		
	HoneySink 91	2011	2011	1	DNS, HTTP, FTP, IRC	bot sink holing		
	HoneyDroid 83	2011	2014*	1	compare Kippo, HoneyTrup	p.o.c Android OS honeypot		
	Glastopf 67	2011	2015	1	HTML, PHP, SQL	web applications, vulnerability types		
	Kojoney2 64	2012	2015	1	SSH (shell activity)	applying Kojoneys lessons learned		
	Compots 89	2013	2015	1	karnstrup, BACnet, mosbus	ICS and SCADA architectures		
	IoTPOT 85	2014*	2015	1	tehet	IoT (ARM, MIPS, and PPC)		
	honeypot-camera 86	2014	2015	1	HTTP	Tornado Web, Webcam Server		
	Shockpot 87	2014	2015	1	Apache, Bash	Shellshock vulnerability		
	Courie 66	2014	2015	×.	SSH (shell activity)	Kappos successor		
	Canarytokens 99	2015	2016	1	URLS, Bitcoin, PDF	honeypot tokens		
	elastichoney 69	2015	2015	1	elasticsearch	elasticsearch RCEs		
high	Sebek 97	2003	2011	1	Win32 and Linux systems	attackers OS activities, state-based		
	Honeywall 93	2005	2009	1	compare Sebek, CentOS	live bootable CD		
	HoneyBow 96	2006	2007	1	Win32 Systems	extraction of malware, state-based		
	Argos 92	2006	2014	1	Linux, Windows XP-7	0-day exploits identification, tainting		
	HIHAT 14	2007	2007	1	php-BB,-Nuke,-Shell,-Myadmin	PHP framework extension, state-based		

- Usually very targeted
- We wanted something more general
- No fine-grained malware binaries, but traffic meta-data
- Inspiration from different honeypots, in particular from the Dionaea honeypot

- Flexible deployment of the most "suitable" honeypot
- Rotate in the IP addresses in the space to avoid blacklisting
- Incrementally learn how to answer incoming packets

20

number port

29

POLITECNICO DI TORINO

- Initial analyses based on first packets (max 1 after the TCP handshake)
 - ---- Protocol fingerprints from NPI (with some weird categories inside)

- Initial analyses based on first packets (max 1 after the TCP handshake)
 - ---- Protocol fingerprints from NPI (with some weird categories inside)

Many open points/questions

Match the scanner with follow-up flows

- Not always the same IP address
- Temporal effects
 - The more you answer, the more you get
 - Quality of what you get? (becoming are a known honeypot)
- How to match honeypot traffic with darknet traffic?
- For many protocols, what to answer is not clear yet

• What should I answer to a DNS request?

Backscattering/spoofed identification

Grouping Origins (ongoing)

Grouping Origins (ongoing)

Grouping Origins (ongoing)

Grouping Origins (ongoing)

- From different darknets
- Groups of ASes doing similar activity simultaneously
 - e.g., port scans
 - e.g., groups that send packets to single port
 - e.g., groups sending
 few packets everywhere
 (e.g., backscaterring)

Perguntas Fragen DomandeGaldera Otázky Otazky OuestionS Spørgsmål Pertanyaan kysymykset Frågor Spørsmål Cwestiynau вопросыPreguntes Sorular Въпроси Vragen Pytania