# A Reproducibility Study of "IP Spoofing Detection in Inter-Domain Traffic"

Jasper Eumann, Raphael Hiesgen, <u>Thomas C. Schmidt</u>, Matthias Wählisch

t.schmidt@haw-hamburg.de

## Spoofing Detection in Interdomain Traffic

#### **Starting Point:**

• Lichtblau, Streibelt, Krüger, Richter, Feldmann: Detection, Classification, and Analysis of Inter-Domain Traffic with Spoofed Source IP Addresses, IMC 2017

#### Claim:

 Method to passively detect spoofed packets in traffic exchanged between networks in the inter-domain Internet that minimizes false positives

Application domain: IXP

 Measurements and Analyses preformed at a large European IXP

#### Our objective:

- Build a software infrastructure that can scrub spoofed traffic at IXPs in real-time
- First: Reproduce results with a different team, different setup, data and times

#### Our approach:

- Iterate methods and (provided) scripts at a large regional IXP
- Extend the analysis with additional BGP data sets and dig into classified traffic

## The IMC'17 Approach

Idea: If a valid packet leaves an AS, it must originate from the routable cone of the emitting AS, i.e., belongs to a prefix reachable through it

Three approaches to identify these cones:

• Naïve:

A prefix P is in the cone of AS A, iff A appears on a BGP path for P

- CAIDA customer cone: All prefixes of customer ASes
- Full cone:

Extends the naïve cone by assuming transitive relations between all neighboring ASes for all prefixes

## Classification

### Traffic types

- Regular
- Bogon: Private or multicast source addresses
- Unrouted: Source addresses from unannounced IP space
- Invalid: Classified as spoofed

|         |                        | IMC 2017                 |                        | Reproduced Results      |                            |  |
|---------|------------------------|--------------------------|------------------------|-------------------------|----------------------------|--|
|         |                        | Bytes                    | Packets                | Bytes                   | Packets                    |  |
|         | Bogon<br>Unrouted      | $0.003\% \\ 0.004\%$     | 0.02%<br>0.02%         | 0.0009%<br>0.00001%     | 0.0022%<br>0.0001%         |  |
| Invalid | Naive<br>CAIDA<br>Full | 1.1%<br>0.19%<br>0.0099% | 1.29%<br>0.3%<br>0.03% | 0.579<br>0.955%<br>0.2% | 1.537%<br>1.563%<br>0.488% |  |

### Time Series for Classified Traffic



### Packet Properties



IMC'17 sees 90 % of invalid UDP traffic to port 123 (NTP)

### Looking Deeper in our Invalid Traffic

Table 2: Traffic mix per protocol and destination port of invalid packets from the reproduced full cone

| ICMP |              |                |                 |                    |                 |                     |                  | total<br>0.37 %  |
|------|--------------|----------------|-----------------|--------------------|-----------------|---------------------|------------------|------------------|
| UDP  | 53<br>1.18 % | 123<br>< 0.1 % | 161<br>0.35 %   | 443<br>19.73 %     | 19302<br>0.18 % | ephemeral<br>0.94 % | other<br>0.81 %  | total<br>20.36 % |
| TCP  | 80<br>3.50 % | 443<br>62.29 % | 27015<br>0.00 % | $10100 \\ 0.00 \%$ | _               | ephemeral<br>6.75 % | other<br>13.67 % | total<br>79.45 % |

Table 3: False positive indicators in traffic of the reproduced full cone

|                       | SSL over TCP | HTTP response | ICMP echo reply | TCP ACK | malformed |
|-----------------------|--------------|---------------|-----------------|---------|-----------|
| Naive Approach        | 3.985%       | 0.174%        | 0.056%          | 86.188% | 0.000%    |
| CAIDA Customer Cone   | 4.166%       | 0.134%        | 0.070%          | 69.197% | 0.000%    |
| CAIDA (multi-AS ext.) | 4.166%       | 0.134%        | 0.081%          | 80.148% | 0.000%    |
| Full Cone             | 6.395%       | 0.117%        | 0.043%          | 76.079% | 0.001%    |
| Full (multi-AS ext.)  | 6.512%       | 0.029%        | 0.044%          | 77.350% | 0.001%    |

### Summary

- Results of IMC'17 could not be reproduced
  - Particular discrepancies for Full Cone approach
- Traffic classified as invalid appears mainly unspoofed
  - Majority of traffic seems HTTP(s) or Quick not NTP or DNS
  - False positive indicators dominate
- Our impression: determination of cones not accurate enough
  - BGP visibility too low
  - Authors of IMC'17 manually added peerings after traffic inspection
- Approach seems unsuitable for operational deployment