CATEGORIZING AND ANALYZING DISCRETE DARK TRAFFIC CLASSES

Michael Collins, USC-ISI
mcollins@isi.edu

Stephen Schwab, USC-ISI
schwab@isi.edu

July 13-14, 2021

This material is based upon work supported by DARPA under Contract No. W911NF19C0058. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official view or policies of the Department of Defense or the U.S. Government.
Introduction

• We developed a deeper partitioning system which breaks traffic into more specific categories
• We split out known scanners versus more explicitly hostile scanners
 – Within the second, we have further categories
• We will discuss these different categories and why they matter
Context

• ISI: 3 Discrete /24’s
• Worked with 2 months of traces in 2020
 – 2020/11/01-2020/12/31
• Data analyzed using SiLK toolkit
 – Primarily for arbitrary IP address collections
Initial Partition

In Known Scanners?

- **K** Known Scanner: activity from sites like censys or shodan, predictable and with public source IP's
- **O** Onceler: Addresses that engage in unclassifiable small individual activity, may be identifiable as a group. Appear to be IoT Scans
- **U** Unclassifiable traffic; should be kept to zero as much as possible
- **D** Backscatter from DDoS attacks. Mostly SA, but also ICMP 3/10.
- **S** "Normal" hostile scanning

Packets Per IP

- **> Threshold**
 - **TCP** Flags* A
 - **UDP** Pkt Size
 - <= 80
 - > 80

- **< Threshold**
 - **ICMP** Type Code
 - Echo Request, TTL Exceeded
 - Echo Reply, IP Blocked
 - Other
 - Other
Different Scanning Classes

• By protocol
 – TCP: Looking for exploits (Telnet (yes), SSH, SMTP, HTTPS)
 – UDP: Looking for reflectors (NTP, SIP, SNMP, SSDP)

• By Goal
 – Known scanners: looking for vulnerable hosts for public announcement
 – Hostile scanners: looking for hosts to exploit

• By Behavior
 – Knowns/Long: hit all targets over brief time
 – Shorts: appear briefly, then go away
IBR Type: Scanning

- Single address targeting a high number of distinct destination addresses
- Known scanners: Shodan, Censys and other organizations that announce their scans
 - Fixed addresses, known port destinations
 - May change over time, but the changes are slow and obvious
- TCP scanners: S, odd ACK behaviors
- UDP: All UDP
IBR Type: Short

• Appears to be scanning (SYN only), but very small activity (<4 packets per host)

• Very short lifetime – appear in one day, and then up to two months later haven’t seen repeats
Different Populations Grow Differently
Observations on Different Population

• Note: small flat point around 12/08-12/11 is due to lack of data
• In both scan and short case, there’s a constant population increases
 – But shorts have practically no overlap
 – Not sure where scan/short barrier is behaviorally
• Generating the known population requires a list of these scanners
 – The sharp increases happen when a known scanner changes their scanning hosts
 – We don’t have a complete set of known scanners
Different Targets

![Different Targets](image-url)
Known Vs Others

• Knowns are taking look at a different set of vulnerabilities than other scanners
 – Also different from each other
 – Known scanners are looking more for RAT ports (1177, 54984)
 – Attackers are more current (?) (5555, 2323, 23)
Conclusions

• Scanning behavior is not monolithic
 – There exist discrete populations within “scanning” which we can identify behaviorally and from point of origin

• The known scanners need to be split off as they operate differently than other scanners
 – Requires out of band investigation as companies come and go

• Split between short and long scanners is an ongoing problem