

Observatory for cyber-Risk Insights and Outages of Networks

Michalis Kallitsis, Merit Network, Inc. / University of Michigan

CAIDA DUST Workshop, July 2021

Acknowledgements

- NSF: CRI ORION: Observatory for Cyber-Risk Insights and Outages of Networks
 - Michalis Kallitsis, Zakir Durumeric (Stanford)
- NSF: ATD: Extremal Dependence and Change-point Detection Methods for High-dimensional Data Streams with Applications to Network Cybersecurity
 - Stilian Stoev (UM), George Michailidis (Florida), Michalis Kallitsis
- DHS S&T: CAOE: Characterizing Malware Behaviors using Darknet Data
 - John Yen (Penn State), Michalis Kallitsis

- 1. Current developments with Merit's network telescope
- 2. Reactive and distributed honeynet: early explorations
- 3. Research case study: classification of Darknet events

Talk Outline

MERIT'S NETWORK TELESCOPE (DARKNET) NORMAL USER SPOOFING THE BACKSCATTER SOURCE IP merit.edu MALWARE INTERNET **MERIT'S ADDRESS** WORM SPACE umich.edu 22 SCANNING PROBES UNUSED SPACE

1. ORION network telescope

ORION network telescope in numbers

- Currently, approximately a /13 subnet (ie, about 500,000 unique IPs)
 - Down from our own /8 but still quite large
- 120GB/day compressed PCAP data
- Started renewing our infrastructure in 2018 with support from NSF CRI grant

ORION network telescope in numbers — Darknet traffic

Hourly graph

ORION network telescope in numbers — Darknet traffic

Yearly graph

ORION network telescope in numbers

Unique Source IPs

Time

ORION data pipeline

Collector (PCAP data)

ORION data pipeline

- Continuous (i.e., state preserving) parsing of PCAP files
 - Parse on hourly basis
 - Extract "Darknet events": Go software: https://github.com/Merit-Research/darknet-events lacksquare
- Events "keyed" by (source IP, port, traffic type)
- - TCP SYN (i.e., scanning)
 - ICMP Echo Request (i.e., scanning)
 - TCP SYN/ACK (i.e., backscatter)
 - TCP RST (i.e., backscatter)

• Traffic type examples (full list: <u>https://github.com/Merit-Research/darknet-events/blob/master/README.md</u>):

ORION data pipeline – Config parameters

- Timeout interval: after how long to "expire" events and remove from cache
 - See "flow timeout problem": Network Telescopes: Technical Report, Moore at al., https://www.caida.org/catalog/papers/2004 tr 2004 04/tr-2004-04.pdf
 - Typical longest gap "rule": we use about 10 minutes (this would prevent "" "" "" "" "" splitting" a scan with duration 2 days and rate 100pps for our Darknet size
 - The Longest Run of Heads, Mark F. Schilling, <u>https://www.jstor.org/stable/</u> 2686886
- Unique destinations: we just use 1
- Samples: store up to 3 packets using reservoir sampling

Approach Advantages

- Ease of data analysis: use standard SQL to process TBs in secs
- Ease of data sharing
 - Important: external users share the cost, i.e., "pay on demand" model
- Ease of data "joins" with external datasets (e.g., Censys, M-Lab)
- Ease of data visualizations for quick exploration (i.e., via Data Studio)
- Lossy compression

Approach Disadvantages

- Lossy compression
- Diminished ability for fine-grained time series
 - Though we have some ideas to (approximately) fix this
- Can become expensive
 - Storage and processing (queries) are charged
 - \$5 per 1TB of data processed
- Handling control to a 3rd party

Analysis case study: scanning durations of 18 billion events

Analysis case study: scanning durations of 18 billion events

Analysis case study: scanning durations of 18 billion events

The most flexible honeypot framework.

2. ORION Canary deployment

Honey Trap

HoneyTrap Open Source project

- https://docs.honeytrap.io
 - Actively maintained by DTact (previously DutchSec)
 - Key contributor: Remco Verhoef
 - Offers 10 or so high-interactivity services (such as SSH, Telnet, etc.)
 - SSH simulator: Good for catching brute-force passwords and "executed commands"
- We instead use the "low interaction" Canary sensor within HoneyTrap
- Why Canary?
 - Monitor all ports (we sacrifice only one high-numbered TCP port used for SSH)
 - Get some extra visibility into the TCP payloads (when available)
 - Easy to distribute to multiple locations

Canary's TCP State Diagram

Canary deployment

Figure 1: HoneyTrap Pipeline And System Architecture

Our Canary vantage points

- Academic institution 1:64 unique IPs
- Academic institution 2: 1 IP
- Academic institution 3 (Merit): /24 deployment (currently 64 unique IPs)
- Cloud providers: AWS and Google (between 2 and 100 unique IPs)
- Orchestration managed with Ansible scripts which makes adding new nodes (relatively) easy

Summary

- New ORION infrastructure in production since 2020
- Data on BigQuery: easily sharable, analyzed, joined with other data
- Enables rapid experimentation / visualizations, supports our Darknet research (clustering, extremal dependence, etc.), supports data for education
- ORION's Canary: towards a distributed & reactive honeypot
 - Data also in BigQuery

Thank You! mgkallit@merit.edu

