DIMES
Distributed Internet MEasurement and Simulation
Yuval Shavitt
shavitt@eng.tau.ac.il
http://www.netdimes.org

The Internet Structure
The Internet Structure

The AS graph

Metropology
Revealing the Internet Structure
Revealing the Internet Structure

Diminishing return!

Deploying more boxes does not pay-off

7 new links

NO new links

30 new links
Revealing the Internet Structure

To obtain the ‘horizontal’ links we need strong presence in the edge

Diminishing Return?

• [Chen et al 02], [Bradford et al 01]: when you combine more and more points of view the return diminishes very fast
• What have they missed?
Diminishing Return?

- [Chen et al 02], [Bradford et al 01]: when you combine more and more points of view the return diminishes very fast
- What have they missed?
 - The mass of the tail is significant

DIMES: Why and What

- Diminishing return?
 - Replace instrumentation boxes with software agents
 - Ask for volunteers do help with the measurement
 - The cost of the first agent is very high
 - each additional agent costs almost zero
- Advantages
 - Large scale distribution: view the Internet from everywhere
 - Remove the "academic bias" measure the commercial Internet
- Capabilities
 - Anything you can write in Java!
 - Obtaining Internet maps at all granularity level with annotations
 - connectivity, delay, loss, bandwidth, jitter, ...
 - Tracking the Internet evolution in time
 - Monitoring the Internet in real time
How many ASes see an edge?

~9000/6000 are seen only by one
DIMES

The Internet as a complex system: static and dynamic analysis

Distributed System Design: Obtaining the Internet Structure

Challenges

• It's a **distributed systems**:
 – Measurement traffic looks malicious
 • Flying under the NOC radar screens
 (Agents cannot measure too much)
 – Optimize the architecture:
 • Minimize the number of measurements
 • Expeditethe discovery rate
 • BUT agents are
 – Unreliable
 – Some move around
Agents

- To be able to use agents wisely we need agents profiles:
 - Reliability
 - Daily (seen in 7 of the last 10 days)
 - Weekly (seen in 3 of the last 4 weeks)
 - Location:
 - Static
 - Bi-homed: where mostly?
 - Mobile: identify home base
 - Abilities: what type of measurements can it perform?
- Many new agents vanish within days
- Surprise: those who stay tend to be very reliable
 - Almost 24/7
- Mobile agents
 - New vantage points
 - Challenge for dynamic analysis
- Current agent count
 - Daily: 1200-1400
 - Weekly: over 1800

Static Internet Graph Analysis

- Degree distribution [Faloutsos99,Lakhina03,Barford01,Chen02]
- Clustering coefficient [Bar04]
- Disassortativity [Vespignani]
- Network motifs (ala Uri Alon)
Degree Distribution

\[\Pr(k) \]

\[\langle k \rangle \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \]

\[\log(\text{degree}) \]

\[\log(\Pr(\text{degree})) \]

DIMES+BGP (Feb 05)

Zipf plot

AS map for Oct 2005

RouteViews (BGP)
- 21281 nodes
- 48629 edges
- \(\langle k \rangle = 4.57 \)

DIMES
- 17573 nodes
- 51485 edges
- \(\langle k \rangle = 5.86 \)

30,984 in both maps
20,501 new edges

69,130 edges \(\langle k \rangle > 6.47 \)
Current Status

- Over 4400 users, over 9700 agents
 - 87 countries
 - All continents
 - Over 650 ASes
 - More than 1200 are active daily
- Over 5,000,000 measurements a day
Vision

- A Network that optimizes itself:
 - every device with a measurement module.
 - How to concert the measurements?
 - How to aggregate them?
 - How to analyze them is a hierarchical fashion?
The DIMES Architecture

• Client-server
• Pull model
 – All communication is originated by agent
 – Future: agent-agent communication
• Data is kept in a rational database (MySQL)
• Hard bound on network usage
 – Negligible CPU usage

Agent Join Process

1. User download the DIMES agent
 • User id, join group, agent id
2. An entry is created in the database agent table
3. Agent gets random script
4. Every hour: keep alive (query for new scripts)
5. Send results:
 1. When result file crosses a threshold
 2. When agent wakes up
Measurements

<table>
<thead>
<tr>
<th>Current</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping</td>
<td>IPv6 (initial trials)</td>
</tr>
<tr>
<td>Traceroute</td>
<td></td>
</tr>
<tr>
<td>Packettrain (in debug)</td>
<td></td>
</tr>
</tbody>
</table>

Target Set

- Initial set of 300,000,000 web sites
 - Using DNS we got 3,000,000 IP addresses
- Collected IP addresses from measurements
- Scan APs without known addresses
 - Space scans to same AP from an agent

⇒ We have over 5,000,000 IP addresses
The Experiment Life-Cycle

- Planning
- Deploying
- Executing
- Result aggregation & filtering
- Default result analysis
 - Topology inference
 - AS path analysis

Topology Discovery

- Discovery
 - Random probing
 - Motifs
 - Triangles
 - Geographic location
 - Same country
- Validation
 - Greedy set cover
Router Alias Resolution

- Ping, ping, ping,…
- No DNS
- No Rocketfuel tricks (and potholes)

Experiments

- Currently three priorities
 - Urgent
 - Timed experiments
 - Time synchronized
 - Normal
 - Most planned experiments
 - Background
 - Random topology discovery
 - Router alias resolution
- Easy to add more
Data Filtering

- **IP level loops**
 - But not in the last hop
 - Disregard for topology
- **AS level loops**
 - But not in the last hop
 - Disregard for topology
- **Destination appears early**
 - Disregard for topology

Agent Black List

- Too many discoveries
- Close to too many destinations (ping)

Database Structure

- Every measurement has a unique id and is placed in a raw result table (insert time, agent, id, source IP, dest IP, experiment id, run id)
- The unique id is used to access the measurement details in other tables (traceroute/ping/packettrain tables)
Main Database Tables

- Main Meas Tab.: raw_res_main
- Alt. Traceroute Tab.: raw_res_traceroute_alt
- Traceroute Tab.: raw_res_traceroute
- Ping Tab.: raw_res_ping
- AS Traceroute Tab.: AS_traceroute
 - AS topology
- Router topology

AS Level Topology

AS node:
- AS Number
- AS name
- Discovering time
- Validation time
- In Degree
- Out Degree
- Max Radius

AS edge:
- Source AS
- Dest AS
- Discovering time
- Validation time
- Discovering Agent
- Measurement number
- Min Delay & Max Delay
- Betweenness
- Visit Count
- Validating Agent
- Validating IP
IP Traceroute Tables

• A traceroute measurement is comprised of 4 traceroutes.
• Traceroutes are done vertically:
 1,2,3,4,...,1,2,3,...,1,2,3,...
• Each hop has an entry that is connected to a measurement via the unique id and hop number.
• The most common IP per hop is kept in the main traceroute table
 – Additional IP addresses are kept in alternative tables

Planner

• A web interface to easy
 – Design expr.
 – Deploy expr.
 – Get results
• Support XML feed
• Support Java API
Measurements Software

- Agents perform *scripts*
- A new agent s/w design:
 - just write it in Java
 - use macro at the script level

DIMES Future

- DIMES as a leading research tool (6-8M measurements/day)
 - Data is available to all
 - Easy to run distributed experiments
 - Fast deployment cycle
 - Easy to add new capabilities
- Plug-ins to improve applications
 - P2P communication
 - Web downloads (FireFox plug-in is available)
Who

- PI: Yuval Shavitt
- Ph.D. students: Eran Shir, Tomer Tankel
- Master’s student: Dima Feldman, Udi, Elad, Anat..
- Programmers: Anat Halpern, Ohad Serfati, Yoav Freund, Ela M.
- Undergrads: Roni Ilani, ….
- Collaborators: HUJI, ColBud

Please, help us: Download the DIMES agent

http://www.netdimes.org