Presentation at the ISMA 2009 AIMS Workshop on Active Internet Measurements CAIDA, UC San Diego, 12 February 2009

The TopHat Measurement Infrastructure

Timur Friedman

Assistant Professor, UPMC Paris Universitas Scientific Director, OneLab

- in support of applications,
- in a future-internet testbed,
- that draws on federated measurement services

- in support of applications,
- in a future-internet testbed,
- that draws on federated measurement services

A service for applications

- Many applications, e.g., overlays, require measurements in real time
- Why applications should draw on a measurement service:
 - Developers focus on their core competencies
 - They gain access to best-of-breed tools
 - They are network-friendly, avoiding inefficient duplication

Inspirations

- Spring, Wetherall, Anderson [USITS 2003]
 "Scriptroute: A Public Internet Measurement Facility"
 - Describes a user-queryable measurement service
 - An ongoing running service
- Nakao, Peterson, Bavier [SIGCOMM 2003]
 - "A Routing Underlay for Overlay Networks"
 - Makes the case for a shared measurement service
 - Proposes primitives the service should supply
 - Describes an implementation

Other inspirations

- RIPE TTM
- DIMES
- N-TAP
- skitter and its successors
- ETOMIC
- others

What we bring

This combination:

- A service for applications
 - In the spirit of the routing underlay
- Running on a continuous basis
 - As in skitter, DIMES, scriptroute, RIPE-TTM, ETOMIC

Primitives we will offer

- Same as routing underlay
 - Network graph
 - Route from A to B
 - Path characteristics (latency, etc.)
- A callback service
 - Alert the application if anything has changed.
- Others to be developed
 - Work in collaboration with application developers.

Challenge: be useful

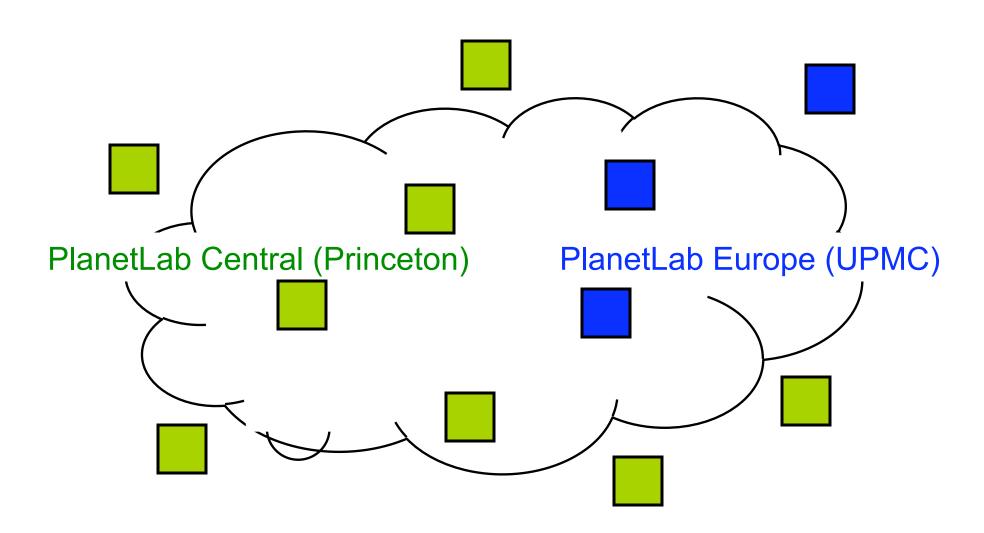
Systems that are useful today:

- Provide historic measurements for study, and/or
- Provide a platform for experimental measurements

They mostly serve measurement researchers

To serve application researchers:

- Work with real application developers
- Build around their needs


Not just 'build it and they will come' (though certainly that's part of it too)

- in support of running applications,
- in a future-internet testbed,
- that draws on federated measurement services

An EU future internet project

	<u>Dates</u>	Partners (academic & industrial)	Funding from EU's <u>FIRE unit</u>
OneLab1	Sept. 2006 - Aug. 2008	10	1.9 M€
OneLab2	Sept. 2008 - Dec. 2010	26	6.3 M€

OneLab based on PlanetLab

OneLab federation plans

Extend PlanetLab federation

- New regional authorities
 - PL Japan, Korea, and China, as they emerge
- New subsidiary authorities
 - National PlanetLabs within Europe
 - G-Lab in Germany
 - Private PlanetLabs (projects, corporations)

Federate with advanced networking test beds

OneLab wireless test beds

- A 50-node Wi-Fi test bed (CERTH, Greece)
 - wireless mesh capabilities
- A mobile WiMAX test bed (Alcatel-Lucent, France)
- A multi-link test bed (Ericsson, Hungary)
 - HSDPA, WLAN, Bluetooth, ZigBee, 3GPP-LTE-like links
 - both real and emulated links
- Using OMF (NICTA, Australia)

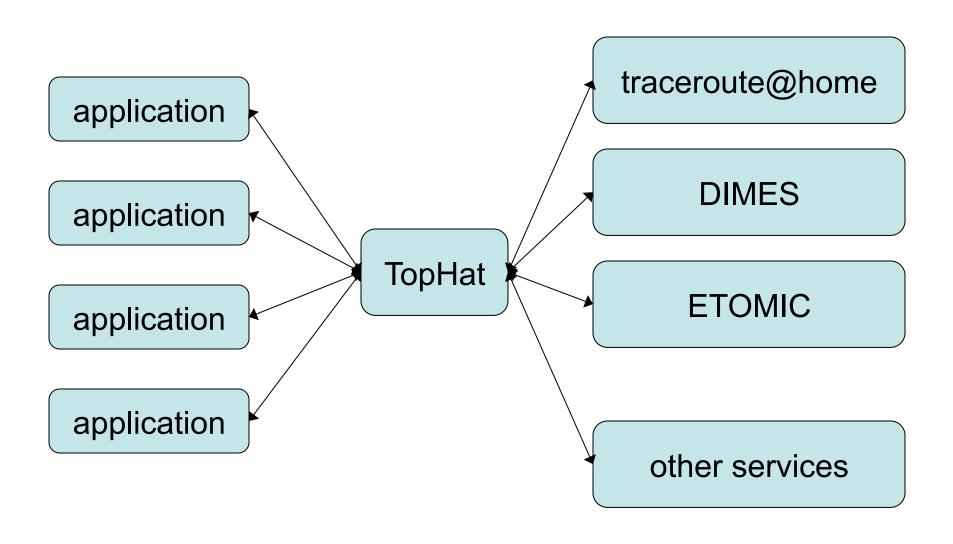
OneLab CDN test bed

Content distribution network (CDN)

- Publish/subscribe (pub/sub) architecture (BT, UK)
- Routing in a slice for CDN (Ericsson, Germany)
- Virtualisation at the service of CDN (U. Paderborn, Germany)

OneLab SAC test beds

Situated and autonomic communications (SAC)


- A SAC gateway (ETH Zurich, Switzerland)
 - connect SAC test beds to PlanetLab Europe
 - from the ANA project
- An ad-hoc opportunistic (pocket-switched) test bed (Thomson, France)
 - from the HAGGLE project
- A disruption- or delay-tolerant network (DTN) test bed (Thales, France)

OneLab monitoring

- Test bed monitoring Provides experimenters with abilities to
 - track their packets through the network (Fraunhofer, Germany)
 - know the network topology (UPMC, France)
- Develop benchmarking methodologies (INRIA, France)
 - The real-world environment is not reproducible
 - How to validate results nonetheless?

- in support of running applications,
- in a future-internet testbed,
- that draws on federated measurement services

General schema

traceroute@home

- A skitter-like service
 - Probing permanently
 - Runs on PlanetLab nodes
- Provides the basic topology information
 - Augmented by the other services

DIMES

- A large scale internet measurement platform
 - Capabilities: ping, traceroute, packettrain
 - Some statistics since September 2004

•	Total users	8104
•	Total agents	18890
•	Countries with users	114
•	ASes	29404
•	AS Links	204204

- DIMES provides TopHat with scale
 - Applications running on PlanetLab interact with the entire internet

ETOMIC

- High temporal resolution (~10 nano second), globally synchronized, active measurements between measurement boxes
- ETOMIC provides TopHat with precision
 - A few high resolution measurement boxes can augment measurements taken from a large number of lower-resolution boxes

- in support of applications,
- in a future-internet testbed,
- that draws on federated measurement services