

CAIDA's Geolocation Tools Comparison

Bradley Huffaker bradley@caida.org CAIDA University of California at San Diego, La Jolla, CA

AIM Workshop -- February 2010

Geolocation

outline

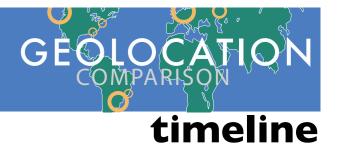
sinet-1-lo-jmb-702.lsanca.pacificwave.net (207.231.240.135)

calda

hpr-lax-hpr--sdsc-10ge.cenic.net (137.164.26.33)

dolphin.sdsc.edu (132.249.31.17) piranha.sdsc.edu (198.17.46.8) pinot-g1-0-0 (192.172.226.1)

Geolocation is the identification of the realworld geographic location of Internet ids.



timeline
NANOG feedback
data

proposed process

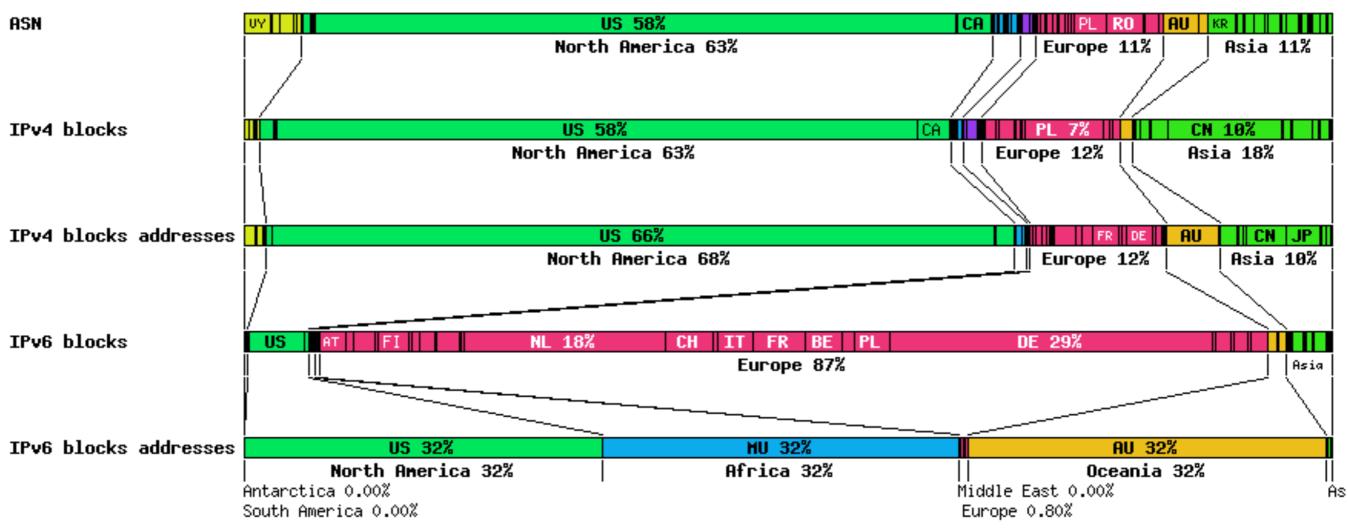
Jan.	public request for feedback to NANOG (12 responses)
Feb.	discuss feedback at CAIDA's AIMS 2010 workshop
Mar.	development
May	run comparison
Dec.	publish report

Calda Most mentioned Serivces GEOLOCATION NANOG feedback

- Major Services
 - MaxMind (GeoIP, GeoLite)
 - Akamai (EdgePlatform)
 - Google (Google Gears)
 - Digital Envoy (Netacuity)
- Smaller Services
 - Quova (Quova On Demand)
 - IP2Location (IP2Location)

- content localization
- credit card verification
- taxation purposes
- legal terms of service applicability
- ad targeting
- data privacy requirements
- DRM restricted content
- nearest datacenter

- whois allocations
 - for each geolocation service, break each block down into largest continuous block of addresses that have the same location
 - whois provides finer breakdown then BGP prefixes
- whois country level "ground truth" ish
 - not really accurate for large organizations
 - registries only provide country as separate field


Whois breakdown

caida

GEOI

percentage of metric controlled by a country/continent

AFRINIC, APNIC, ARIN, LACNIC, RIPE database dumps Jan. 29, 2010

- BGP (Routeviews/RIPE)
 - IPv4 Prefix to AS mapping
- ark router graph
 - IPv4 prefixes / hostnames
- CAIDA's AS relationships
 - classify AS's into categories
 - large transit provider
 - small transit provider
 - enterprise
 - content provider

	number of IPv4 addresses
Tier I	26k
Tier 2	519
GEANT	299
I-Light	265
Internet 2	317
National LambdaRail	183
CANET	96

GEOLOC

data

If you have ground data, please let me know! bradley@caida.org

steps

- I. Run each service against the whois allocations, subdivide until all IP addresses with in the suballocation map to the same region.
- 2. annotate blocks by their AS class
 - $IP \rightarrow prefix \rightarrow AS \rightarrow class$

analysis

- ground truth
 - + compare against ISP locations
 - + compare against whois country
- AS class
 - + how does AS class affect accuracy
 - + how does AS class affect the frequency of block subdivision
- hostnames vs location
 - + check if hostname changes effects geolocation