Correlating Spam Activity with IP Address Characteristics

Chris Wilcox, Christos Papadopoulos CSU John Heidemann USC/ISI

AIMS 2010 - Feb 10, 2010

Introduction

- Common belief: spamming hosts exhibit specific address characteristics:
 - dynamically allocated addresses
 - specific geographical areas
 - more tolerant spam policies
 - less stability, more volatility, shorter uptimes.

Our goal: quantify differences in address characteristics between spammers and legitimate hosts

Approach

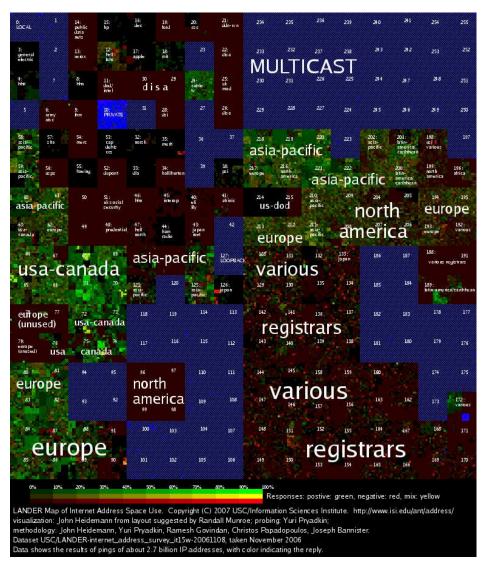
- Correlate the results of an IP address visibility study with a commercial IP address blacklist for the same period
 - Quantify differences between address characteristics of spammers and nonspammers
 - Quantify differences in domain names
 - Investigate collateral damage if a /24 is blocked due to presence of spammers

Data Sources

- Address visibility:
 - survey of reachable Internet addresses every 3 months.
 - Use active probing (ICMP) over ~24,000 /24
 IPV4 blocks (1% of the Internet)
- Reputation-based block list from eSoft.com
 - <IP addr, score>, based on sender address verification, sender policy framework, heuristic analysis, reputation filtering, historical averaging, etc...

Visibility Study

- Census: ping every internet address every three months
- Survey: select 1% of /24 subnets and ping each address every 11mins
- We use surveys



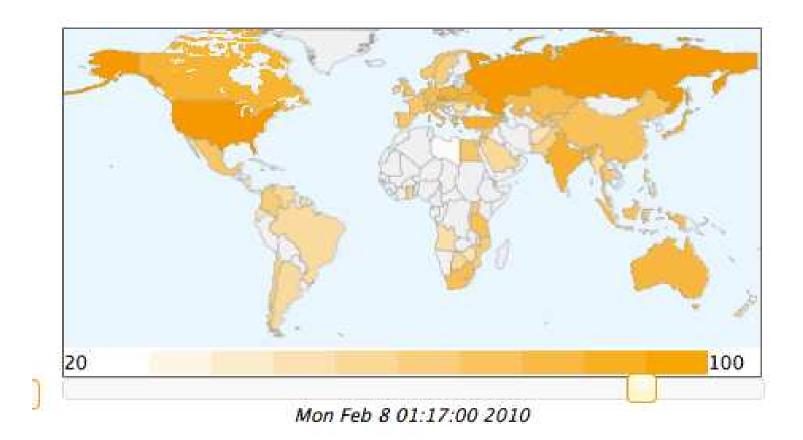
Visibility Metrics

- Availability (A) is the fraction of time that an IP address returns positive replies
- Volatility (V) captures the number of transitions from up to down over survey
- Uptime (U) is the median duration of positive replies from an IP address
- Each statistic computed for IP addresses, then averaged over a /24 subnet

Spammer List

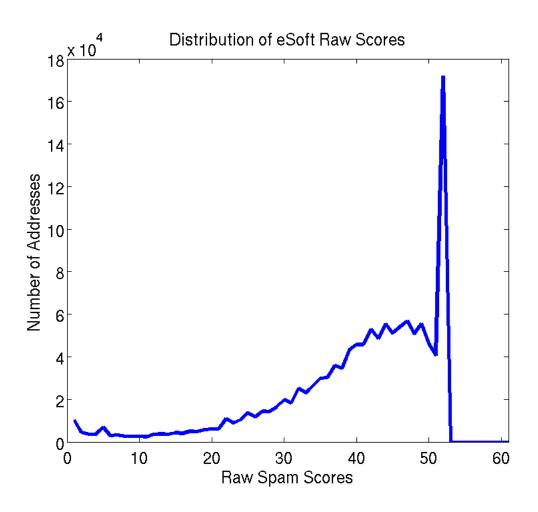
- Spammer data from eSoft.com
 - Two lists: Block list and Raw list
 - Both delivered to CSU every 30mins
 - (yes we archive and we can share)
- List of IP addresses with spam score per address
 - Score range: -60 to +70
 - Score >30: spam with high confidence (conservative)
- We use eSoft's Raw List:
 - ~1.25M addresses spanning 400k /24 subnets daily
 - We assume score >= 20 is spammer

eSoft World Coverage



eSoft has pretty good coverage of the world

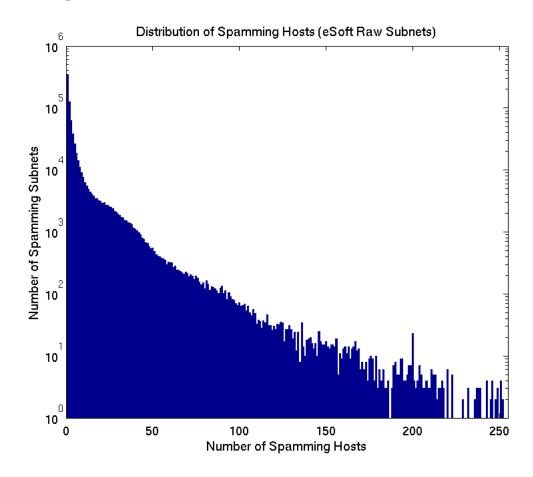
eSoft List Score Distribution



Research Methodology

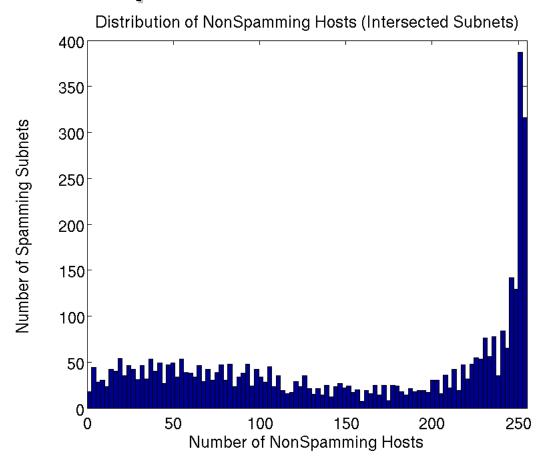
- Correlate ping survey data with eSoft list between Sept. 14-28, 2009
- Intersect data from the survey and eSoft to identify spamming subnets
- The rest are Non-spamming subnets, i.e., have no spammers (yes, this might be a weak assumption)
- Study the differences between spamming and non-spamming subnets.

Spammer Distribution



Most subnets have fewer than 5 spamming hosts

Non-Spammer Distribution



- Non-spamming hosts much more evenly distributed
- ..but note a large number of subnets that are almost fully populated.

Question 1: Address Characteristics

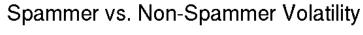
- Question: Do spammer and non-spammer subnets have different IP characteristics (availability, volatility, uptime)?
- Approach:
 - intersect blacklist and survey subnets and study their characteristics
 - before intersection: 818k blacklist and 20k survey subnets
 - after intersection: 4k spamming and 15k nonspamming subnets.

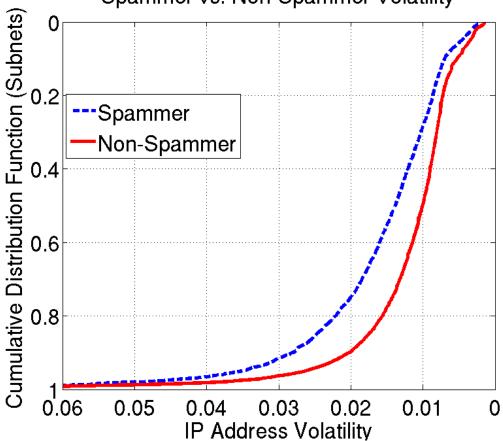
Address Availability

Spammer vs. Non-Spammer Availability Cumulative Distribution Function (Subnets) 0 0.6 Spammer 'Non-Spammer 8.0 8.0 0.6 0.4 0.2 0 IP Address Availability

- 72% of non-spammers but only 50% of spammers have >0.5 availability
- 50% of non-spammers but only 24% of spammers have >0.8 availability

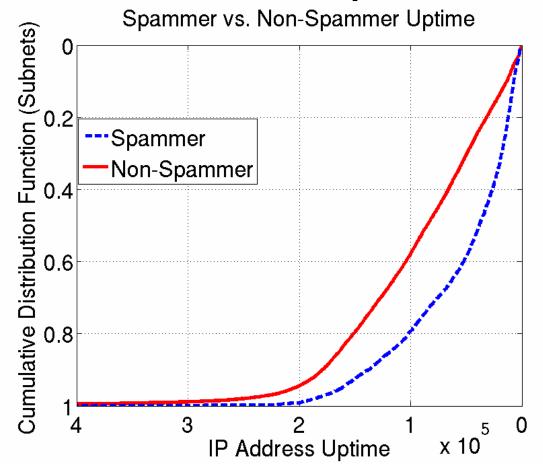
Address Volatility





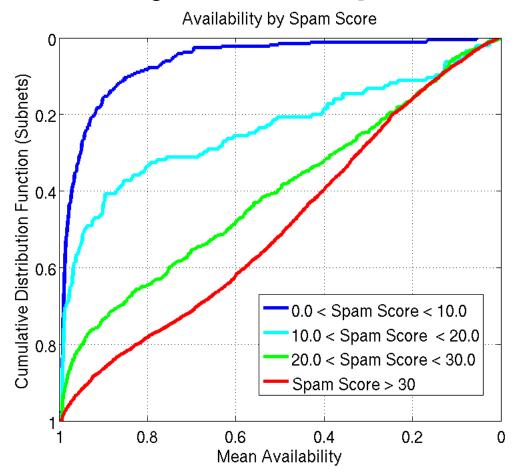
- 90% of non-spammers but only 75% of spammers have <0.02 volatility
- 50% of non-spammers but only 28% of spammers have <0.01 volatility

Address Uptime



- 70% of non-spammers, 42% of spammers have > 14 hour uptime
- 44% of non-spammers, 22% of spammers have > 28 hour uptime

Availability with Spam Score

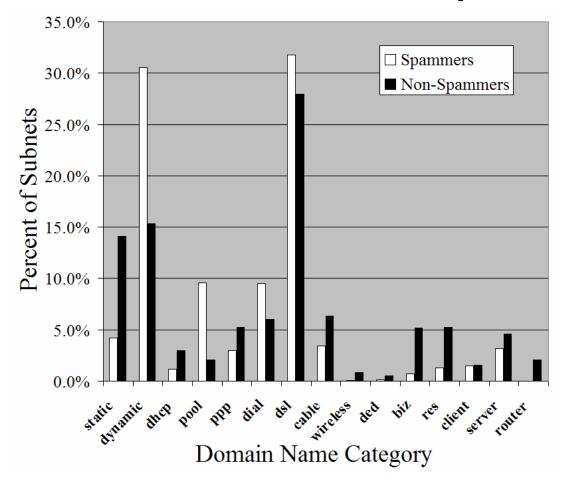


- 83% of low spammers have > 0.9 availability.
- 14% of high spammers have > 0.9 availability.

Question 2: Domain Names

- Question: How do spammer domain names differ from non-spammer names?
- Approach:
 - resolve all names in intersected subnets using Linux host command
 - categorize based on key strings in the name

Domain Name Comparison



- 2X the spammers in dynamic category, 30.5% vs. 15.3%.
- 3X the non-spammers in static category, 14.1% versus 4.2%.

Question 3: Collateral Damage

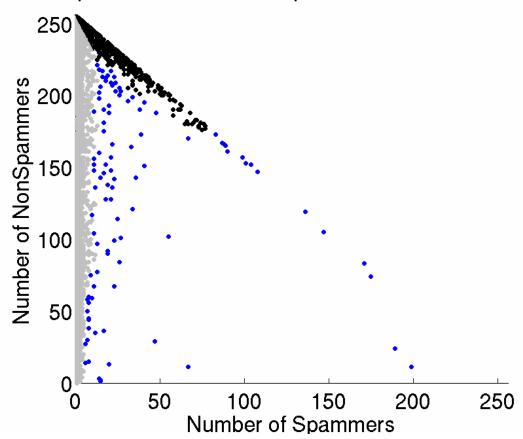
 Question: Is blocking the entire /24 subnet a good idea when one or more addresses have been used for sending spam?

Collateral Damage consists of legitimate mail servers that are incorrectly blacklisted.

- Approach:
 - 1) Compute population of spamming hosts versus non-spamming hosts per subnet.
 - 2) Quantify the number of legitimate mail servers in subnets with spammers.

Collateral Damage: Population

Spammers versus NonSpammers in Intersection



- Many subnets do have spammers (and may get black listed)
- Blue cluster shows high spammer activity
- Diagonal blue cluster shows some highly compromised subnets negligent or collaborating provider?

Collateral Damage: Results

TABLE II COLLATERAL DAMAGE STUDY

Description	Domains	Hosts	Subnets
Intersected Subnets		646,040	4,126
Domain Query Timeout		12,899	
Domain Query Invalid		175,535	
Domain Query Valid		457,606	
Unique Domain Names	4,044		
Number Mail Servers		6,718	
Unique Mail Servers		3,872	2,154
Collateral Damage		1,377	365

- Collateral damage in 365 subnets out of 4,126 studied (8.8%)
- This seems significant to us

Robustness

- Ping-based address probes undercount the number of responsive addresses
- Spam list may not be complete (depends on eSoft's customer reach)
- Email volume from servers isn't considered, some servers may be receive-only
- Spam blacklists vary greatly between vendors, no industry standard for scores

Conclusions

- Significant differences in IP availability, volatility uptime and domain names between spamming and non-spamming hosts
- Network behavior can be used to help identify and mitigate spamming behavior
- Coarse-grained blacklisting of /24 blocks incurs significant collateral damage

Acknowledgements

- Yuri Pradkin, and Xue Cai (USC/ISI) for access to survey data sets.
- Dan Massey, and Steve DiBenedetto (CSU) for help in many areas.

Automatic IP Hit list Generation

Xun Fan and John Heidemann USC/ISI

Research: IP Hitlist Generation

- an IP hitlist is a list of representatives for each edge network
- essential input to
 - traceroute mapping (CAIDA's Skitter, Ark, etc.)
 - routing reachability studies (Bush et al.)
- ideal hitlist: current, complete, stable, reachable

```
traceroute to www.mit.edu (18.9.22.169), 30 hops max, 60 byte packets

1 router.postel.org (128.9.112.7) 0.624 ms 1.040 ms 1.475 ms

2 198.32.16.30 (198.32.16.30) 0.262 ms 0.307 ms 0.376 ms

3 lax-hpr.losnettos-hpr.cenic.net (137.164.27.241) 0.781 ms 0.837 ms 0.885 ms

4 hpr-nlr-pn--lax-hpr.cenic.net (137.164.26.150) 1.417 ms 1.436 ms 1.411 ms

5 hous-losa-87.layer3.nlr.net (216.24.186.31) 32.885 ms 32.901 ms 32.888 ms

6 atla-hous-70.layer3.nlr.net (216.24.186.9) 57.642 ms 57.593 ms 57.561 ms

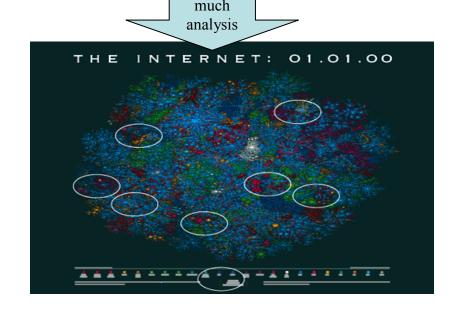
7 wash-atla-64.layer3.nlr.net (216.24.186.21) 71.317 ms 70.982 ms 71.146 ms

8 newy-wash-98.layer3.nlr.net (216.24.186.22) 77.498 ms 77.511 ms 77.493 ms

9 216.24.184.102 (216.24.184.102) 76.360 ms 76.437 ms 76.480 ms

10 OC11-RTR-1-BACKBONE-2.MIT.EDU (18.168.1.41) 82.744 ms 82.788 ms 82.857 ms

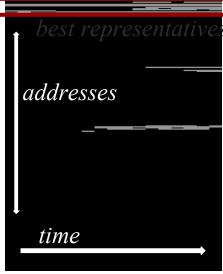
11 * * *
```

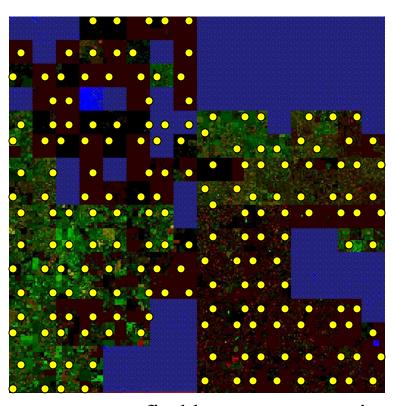


Automatic Hitlist Generation



look at each /24's history





to find best representative for each /24 over whole Internet

Hitlist Design Questions

- how much history is needed?
 - A: more is better, 8 censuses (24 months) enough

what function of history best predicts

f	Function	2	Equation	Input History	Calculation	Score	Predictivity
	Average	y =	$\sum_{i=1}^{17} Bi$	0000000000001011	0+0++1+0+1+1	3	54%
	Linear	y =	$\sum_{i=1}^{17} a * i * Bi$	00000000000001011	14+16+17	47	55%
	Power	y =	$\sum_{i=1}^{17} 1/(18-i) * Bi$	0000000000001011	1/4*1+1/3*0+1/2*1+1	1.75	56%

Fundamental Limits of Hitlist Accuracy

- accuracy: will representative be there?
- what accuracy should be expected?
 - best possible hitlist accuracy is ~60%
 - (even with >3 year history!)
- preliminary explanation [work-inprogress!]
 - 40% of the network is *unstable*
 - dynamically addressed or firewalled
 - (confirms: manual hitlists are unmaintainable)

/24 with NO good representatives

