#### End-to-end Methods for Traffic Shaping Detection, Performance Problem Diagnosis, Home Wireless Troubleshooting

Partha Kanuparthy Joint work with Constantine Dovrolis AIMS 2011, CAIDA



MeasurementLab.org





**Carnegie Mellon** 

#### Three Tools

ShaperProbe: End-to-end detection of traffic shaping

✤ GATech, M-Lab (under submission)

Pythia: Detection, localization, diagnosis of performance problems

GATech, DoE (early work; 4 months)

Troubleshooting home wireless networks

GATech, Intel Labs, CMU (early work; 6 months)

#### ShaperProbe: End-to-End Detection of Traffic Shaping

#### In this part..

 Detecting traffic shapers using active probing (ShaperProbe tool)

4

✤ ISP case studies

## What is Traffic Shaping?

- Practice of dropping link speeds after a burst period
  - smoothes traffic
  - helps in managing/reducing congestion
  - pricing service tiers using shared infrastructure
- Why detect shaping?
  - SLA verification (customers)
  - configuration testing (operators)

#### How long does the PowerBoost burst last?

A PowerBoost burst will normally last as long as the 10MB of a file download on Comcast's 6Mbps High-Speed Internet service, and as long as 5MB of a file upload.



## Traffic Shapers

- Implemented using a Token Bucket at a link
  - accumulates tokens (bytes) at certain rate (bytes/s)
  - services packet when it has sufficient tokens
- Cisco devices: rate-limit command
- Shapers vs. Policers:

Packets

- Tokens Token Bucket
- shapers queue packets waiting for tokens; policers drop
- we detect both

Configuration: burst size, shaping rate

# ShaperProbe: Design

- Sender (S) sends a constant-rate stream at rate C to receiver (R)
- ✤ R estimates received rate in small intervals
- Probing stops when either:

  - ∞ after 60s



# Time Design: Capacity

- Probing rate = path capacity C
- ✤ We estimate path capacity C before probing:
  - ✤ S sends packet trains of N back-to-back packets
  - Show R estimates capacity by measuring dispersion δ of each train:  $\hat{C} = \frac{(N-1)S}{s} \longrightarrow \text{packet size (1470B)}$



## Design: Classification

- The probing stream can be designed to emulate well-known applications:
  - ∽ change payload, etc.
  - 🔹 e.g., Skype, BitTorrent, ...
- some applications may be more likely to be shaped by ISP

You Tube

9

BitTorrent



# Detecting Shaping

- Shaping is characterized by a level shift in received rate
  - we observe rate in intervals of 300ms
- Level shift point if:
  - all points before > all points after
  - min. # points before and after



→ "large" drop in median rate (factor of 1.1):  $\tilde{R}_r(i) > \gamma \tilde{R}_r(j)$ 

# Shaping Configuration

Receive

- We estimate shaping parameters in case of shaping:
  - shaping rate: median rate after level shift



# The ShaperProbe Service

- We run a service on M-Lab using 48 server replicas and a load balancer front end
  - servers connected to tier-1 ASes
- Open source client: supported on 3 platforms
- Surrently 1500+ users a day



| DiffProbe beta release. O<br>Shaper Detection Module.                  | ctober 2009. Build 1002.      |                    |
|------------------------------------------------------------------------|-------------------------------|--------------------|
| Connected to server 38.1                                               | 02.0.111.                     |                    |
| Estimating capacity:<br>Upstream: 3561 Kbps.<br>Downstream: 22003 Kbps |                               |                    |
| The measurement will take                                              | e upto 2.5 minutes. Please wa | sit.               |
| Checking for traffic shape                                             | ers:                          |                    |
| Upstream: Burst size: 399<br>Shaping rate: 1045 Kbps.                  |                               |                    |
| Downstream: Burst size: 9<br>Shaping rate: 6346 Kbps.                  |                               |                    |
| For more information, visi                                             | t: http://www.cc.gatech.edu   | /~partha/diffprobe |
|                                                                        |                               |                    |

# ShaperProbe users say...

## ShaperProbe users say...

Checking for traffic shapers: [d You can run ShaperProbe to get a more accurate idea of your speeds. ..... Upstream: Burst size: 9548-9622 KB; »www.measurementlab.net/measureme…iffprobe Shaping rate: 10714 Kbps. ShaperProbe is actually meant to detect any shaping on your Downstream: Burst size: 19371-19972 KB; line, however because of that it runs tests for a longer time Shaping rate: 53274 Kbps. than any test site I know, resulting in a highly accurate reading. For more information, visit: http://www.cc.gatech.edu/~partha/diffprobe ut I do know that I sustain ~2.8 MB/s via torrent or usenet when I've tried that to test. I haven't four initiable single-connection test as of yet (except for shaperprobe). Some are more accurate than others. There's a tool called Shaperprobe that you can use, you can find a link to it from in here in somewhere, that will give you the most accurate reading IMO. to forum · permalink · 2010-06-05 13:08:02 · reply et at that moment, I was sustaining my 16mbps on an 8mbps plan. Chatted online and yes the 50/10 was available, ordered and ultimately got it. reak Yes the best way is for a large download going past the boost so above is my example. I have also found that shaperprobe seems to do a good job estimating both the boost and & P2P TIPS, TRICKS AND INFO. sustained levels. It's the most accurate thing that I've come across to date other than www.cc.gatech.edu/~partha/diffpr…robe.exe transfers... reply to K2NNJ Flash based speed tests really haven't kept up with technology. Try ShaperProbe to forum · permalink · 2010-03-24 18:57:00 · reply »www.measurementlab.net/measureme…iffprobe Traffic Shaping with ShaperProbe It will give you a good idea of your provisioned speed and your speed with Power Boost. May 07. 09 by sharky 13.695 views [Insert Comcast employee disclaim III IIIy level so humor opinion it is annost a total waste of und going to speed testing sites such as most. As recommended "Shaper Probe" is the good stuff. Real life transfers are of course the most accurate. I have to agree there. ShaperProbe has been spot on every time I've tried it. 13

п,

The measurement will take upto 2.5 minutes. Please wait.

#### Shaping in ISPs: some observations

#### Overview of Data (till Sept. 2010)

We look at a subset of 37,540 runs from 2,000+
 ASes

Shaping detections in top-5 ASes in terms of runs:

| ISP         | Upstream (%)   | Dwnstrm. (%)   |
|-------------|----------------|----------------|
| Comcast     | 75.4           | 82.5           |
| Comcast     | (3851/5105)    | (3506/4248)    |
| Road Runner | 6.4 (69/1073)  | 63.3 (513/811) |
| AT&T        | 13.4 (114/849) | 17.7 (125/707) |
| Cox         | 63.4 (399/629) | 56.5 (252/446) |
| MCI-Verizon | 5.1 (25/490)   | 7.3 (31/426)   |

# Shaping factors

- There isn't a "yes-no" answer to "Is my ISP shaping traffic?"
- Factors that affect shaping detections in an ISP:
  - tier of service
  - geographical region
  - link type: DSL? cable? Ethernet?
  - ✤ time-of-day
  - load conditions



| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 3.5      | 1             | 5             | 16.7               |
| 4.8      | 2             | 5, 10         | 15.2,  30.5        |
| 8.8      | 5.5           | 10            | 25.8               |
| 14.5     | 10            | 10            | 18.8               |

(a) Upstream.

Comcast Business Class Internet (May 12, 2010).

http://business.comcast.com/internet/

| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 19.4     | 6.4           | 10            | 6.4                |
| 21.1     | 12.8          | 10            | 10.1               |
| 28.2     | 17            | 20            | 14.9               |
| 34.4     | 23.4          | 20            | 15.3               |

(b) Downstream.

Comcast High Speed Internet FAQ: PowerBoost. http://customer.comcast.com/Pages/ FAQListViewer.aspx?topic=Internet&folder= 8b2fc392-4cde-4750-ba34-051cd5feacf0. Comcast High-Speed Internet (residential; May 12 2010).

http://www.comcast.com/Corporate/Learn/ HighSpeedInternet/speedcomparison.html.

17



| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 3.5      | 1             | 5             | 16.7               |
| 4.8      | 2             | 5, 10         | 15.2,  30.5        |
| 8.8      | 5.5           | 10            | 25.8               |
| 14.5     | 10            | 10            | 18.8               |

(a) Upstream.

Comcast Business Class Internet (May 12, 2010).

http://business.comcast.com/internet/

| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 19.4     | 6.4           | 10            | 6.4                |
| 21.1     | 12.8          | 10            | 10.1               |
| 28.2     | 17            | 20            | 14.9               |
| 34.4     | 23.4          | 20            | 15.3               |

(b) Downstream.

Comcast High Speed Internet FAQ: PowerBoost. http://customer.comcast.com/Pages/ FAQListViewer.aspx?topic=Internet&folder= 8b2fc392-4cde-4750-ba34-051cd5feacf0. Comcast High-Speed Internet (residential; May 12 2010).

http://www.comcast.com/Corporate/Learn/ HighSpeedInternet/speedcomparison.html.

17



| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 3.5      | 1             | 5             | 16.7               |
| 4.8      | 2             | 5, 10         | 15.2,  30.5        |
| 8.8      | 5.5           | 10            | 25.8               |
| 14.5     | 10            | 10            | 18.8               |

(a) Upstream.

| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 19.4     | 6.4           | 10            | 6.4                |
| 21.1     | 12.8          | 10            | 10.1               |
| 28.2     | 17            | 20            | 14.9               |
| 34.4     | 23.4          | 20            | 15.3               |

(b) Downstream.

Comcast Business Class Internet (May 12, 2010). http://business.comcast.com/internet/

Comcast High Speed Internet FAQ: PowerBoost. http://customer.comcast.com/Pages/ FAQListViewer.aspx?topic=Internet&folder= 8b2fc392-4cde-4750-ba34-051cd5feacf0.

Comcast High-Speed Internet (residential; May 12 2010).

http://www.comcast.com/Corporate/Learn/ HighSpeedInternet/speedcomparison.html.

17



| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 3.5      | 1             | 5             | 16.7               |
| 4.8      | 2             | 5, 10         | 15.2,  30.5        |
| 8.8      | 5.5           | 10            | 25.8               |
| 14.5     | 10            | 10            | 18.8               |

(a) Upstream.

| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 19.4     | 6.4           | 10            | 6.4                |
| 21.1     | 12.8          | 10            | 10.1               |
| 28.2     | 17            | 20            | 14.9               |
| 34.4     | 23.4          | 20            | 15.3               |

(b) Downstream.

Comcast High Speed Internet FAQ: PowerBoost. Comcast Business Class Internet (May 12, 2010). http://customer.comcast.com/Pages/ http://business.comcast.com/internet/ FAQListViewer.aspx?topic=Internet&folder= 8b2fc392-4cde-4750-ba34-051cd5feacf0.

Comcast High-Speed Internet (residential; May 12 2010).

http://www.comcast.com/Corporate/Learn/ HighSpeedInternet/speedcomparison.html.

17



| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 3.5      | 1             | 5             | 16.7               |
| 4.8      | 2             | 5, 10         | 15.2,  30.5        |
| 8.8      | 5.5           | 10            | 25.8               |
| 14.5     | 10            | 10            | 18.8               |

(a) Upstream.

| C (Mbps) | $\rho$ (Mbps) | $\sigma$ (MB) | Burst duration (s) |
|----------|---------------|---------------|--------------------|
| 19.4     | 6.4           | 10            | 6.4                |
| 21.1     | 12.8          | 10            | 10.1               |
| 28.2     | 17            | 20            | 14.9               |
| 34.4     | 23.4          | 20            | 15.3               |

(b) Downstream.

Comcast Business Class Internet (May 12, 2010). http://business.comcast.com/internet/ details.aspx. Comcast High Speed Internet FAQ: PowerBoost. http://customer.comcast.com/Pages/ FAQListViewer.aspx?topic=Internet&folder= 8b2fc392-4cde-4750-ba34-051cd5feacf0. Comcast High-Speed Internet (residential; May 12 2010).

http://www.comcast.com/Corporate/Learn/ HighSpeedInternet/speedcomparison.html.

# Case study: AT&T

- ✤ Few shaping observations: 13-18% runs
- ~60 runs show shaping modes => from Mediacom (domain mchsi.com)



# Case study: AT&T

- ✤ Few shaping observations: 13-18% runs
- ~60 runs show shaping modes => from Mediacom (domain mchsi.com)



#### et cetera

 Designed end-to-end shaping detection methods using passive observation



Looking into app-performance optimization using estimates: plug-in for vuze (150m+ users)

19

 $x = 10^4$  Decomposition at level 5 : s = a5 + d5 + d4 + d3 + d2 + d1

a<sub>5</sub> 1.5

#### Pythia: Detection, Localization and Diagnosis of performance problems

Joint work with Constantine Dovrolis, Sajjad Zarifzadeh and Madhwaraj G.



- Distributed monitoring system for wide-area performance problems
  - not failures (boolean)
- Monitoring: e2e active probing measurements from perfSONAR (Internet2, ESnet, ...):
  - topology (data plane): traceroutes
  - one-way delays, losses, bandwidth (capacity, throughput) ...
- ✤ Funded by DoE

#### Detection

"Is there a problem on path X right now?"

- noticeable loss rate, increase in delays, ...
- look for primitives: level shifts, outliers, etc.
- algorithms being developed

#### Localization

"Which link(s) caused the performance problem?"

- Find smallest set of bad link(s) that caused the problem
- Quantify performance into multiple levels:
  {good, ..., moderate, ..., bad}

Account for case of multiple bottlenecks on path

#### Localization

 Tech report available:
 "Localization of Network Performance Problems with Multi-level Discrete Tomography," Sajjad Zarifzadeh, Constantine Dovrolis, 2011.



#### Diagnosis

- "What is the problem?"
- e.g., insufficient/excessive buffer, routing
  configuration, faulty devices, duplex mismatch, ...
- approach: machine learning
- work in progress

#### Troubleshooting Home Wireless Networks

Joint work with Constantine Dovrolis (GATech) ,Dina Papagiannaki (Intel Labs), Peter Steenkiste and Srini Seshan (CMU)

#### Home Wireless Networks

Focus on performance problems in 802.11
 networks



# Userlevel Diagnosis

- Goal: design a tool that allows home users to do root-cause diagnosis (potentially suggest solutions)
- We operate at the application layer (layer-3)
  - no administrative/root access requirements
  - no NIC/vendor-specific requirements
- Work in progress: in collaboration with Intel Research Pittsburgh and CMU

# Approach

- Understand how different packet probing structures interact with 802.11
  - v packet pairs, trains, etc.
- Probing structures allow us to distinguish between pathologies
- Cooperative diagnosis localizes the problem

#### Thank You! partha @ cc . gatech . edu

End-to-end Methods for Traffic Shaping Detection, Performance Problem Diagnosis, Home Wireless Troubleshooting

> Georgialnstitute of Technology

MeasurementLab.org ()





#### Implementing ShaperProbe

- Non-intrusiveness: abort probing if we see losses
- Probing stability: send small trains if we cannot sleep for short periods (e.g., <15ms on Win32)</p>
- 802.11 wireless: extended capacity estimation
  phase using a longer train
- Noise in received rate: we "smooth" measurements

Accuracy

Wide-area experiments: Comcast to/from GT
 Emulate traffic shaping in front of the modem

