Internet Atlas: A Geographical Database of the Physical Internet

Active Internet Measurement Systems Workshop (AIMS) February 6-8, 2013

Ram Durairajan Computer Sciences University of Wisconsin

Motivation

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

rkrish@cs.wisc.edu

Objectives of our work

- Create and maintain a comprehensive catalog of the *physical Internet*
 - Geographic locations of <u>nodes</u> (buildings that house PoPs, IXPs etc.) and <u>links</u> (fiber conduits)
- Deploy portal for visualization and analysis
- Extend with relevant related data
 - Active probes, BGP updates, Twitter, weather, etc.
- Apply maps to problems of interest
 - Robustness, performance, security

Related work

- Many prior Internet mapping efforts
 - S. Gorman studies from early 2000's
 - CAIDA
 - DIMES
- Commercial activities
 - TeleGeography
 - Renesys
 - Lumeta
- Internet Topology Zoo

Compiling a physical repository

- Step #1: Identification
 - Utilize search to find maps of physical locations
- Step #2: Transcription
 - Multiple methods to automate data entry
- Step #3: Verification
 - Ensure that data reflects latest network maps
- Our hypothesis is that physical sites are limited in number and fixed in location
 - But the raw number is still large!

Challenges

- Accuracy
 - How accurate are the node locations?
 - How accurate are the link paths and connections?
- Completeness
 - How much of the physical Internet is in the catalog?
- Varying data formats
 - requires varying approaches for processing
- Verification problems
 - networks change, data entry errors due to manual annotations

Internet Atlas @ UW

- Effort began in September '11
 - Capture everything from maps discovered by search
 - Use all relevant data sources (ISP maps, colocation, data centers, NTP, traceroute, etc.)
- Data extraction tools
- Comprehensive database
 - Developed using MySQL
- Alpha web portal http://atlas.wail.wisc.edu
 - Includes ArcGIS for visualization and analysis

Current DB

- Number of networks: 372
- Number of tier 1 networks: 10 (all)
- Number of data centers: 2,179
- Number of NTP servers: 744
- Number of traceroute servers: 221
- Number and type of other nodes: IXP (358), DNS root (282)
- Total number of nodes: 13,734
- Number of unique locations of nodes: 7,932
- Maximum overlap at any one node: 90
- Total number of links: 13,228

Identifying relevant data

- Internet search reveals significant information
 - ISP's and data center hosts routinely publish maps and locations of their infrastructure
 - Other elements such as NTP list precise locations
- Creating a corpus of search terms
 - Geography is important
- Timely representations require repetition

Example: Telstra world wide

Example: Sprint IP network (US)

Example: Regional fiber

rkrish@cs.wisc.edu

Illinois POP List

ALTON

Address: 1805 Washington Ave Zip: 62002 Type: CO Status: FUTURE CLLI: ALTNILAK

BELLEVILLE

Address: 211 Kretschmer Ave Zip: 62220 Type: CO Status: ACTIVE CLLI: BLVLILAD

BLOOMINGTON

Address: 110 E Monroe St Zip: 61701 Type: CO Status: ACTIVE CLLI: BLTNILXD

Address: 110 E Monroe St Zip: 61701 Type: CO Status: DOUBLE CLLI: BLTNILXD

CAIRO

Address: 221 15th St Zip: 62914 Type: CO Status: ACTIVE CLLI: CAIRILCF

CANTON

Address: 75 W Pine St Zip: 61520 Type: CO Status: ACTIVE CLLI: CNTNILCN

CARBONDALE

Address: 208 W Monroe St Zip: 62901 Type: CO Status: ACTIVE CLLI: CRDLILXE

CARMI Address: 200 W Cherry St Zip: 62821

Example: Metro fiber maps

Automating transcription

 Web pages contain Internet resource information in a variety of formats

Text, flash, images, Google maps-based, etc.

Our goal is to extract information and enter it into our DB *automatically*

Requires identification of relevant page

- Library of parsing scripts for various formats
- Sometimes manual entry and annotation is necessary

Geo-coding node locations

- Physical locations of nodes from search
 - Lat/Lon
 - Street address
 - City
- All locations decomposed in DB to Lat/Lon
 - Google geocoder
 - http://maps.googleapis.com/maps/api/geocode/ xml?address="+address+"&sensor=false

Geo-accurate link transcription

- Transcribing geographic information for links is much more challenging than for nodes
- Step #1: Copy images

 Max zoom required for max accuracy
- Step #2: Image patching via feature matching
- Step #3: Link image extraction from base map
- Step #4: Geographic projection
 - Key step uses ArcGIS registration functionality
- Step #5: Link vectorization

Structure in link maps

Image extraction

Geo-specific link encoding

Internet Atlas – Full View

Internet Atlas – Layers

Internet Atlas – Identify

Internet Atlas – Identify

Internet Atlas – Zoom

Internet Atlas – Search

Internet Atlas – Search

Target applications

- Many potential applications for an accurate, but incomplete graph of the physical Internet
- Application 1: link characterization
 - What are the physical distances of links?
- Application 2: robustness
 - Are there vulnerabilities in the current infrastructure?
- Application 3: intra-domain routing
 - Given peering relationships, can we identify inefficiencies?

Improving network availability

- Given outage event risk profile, how can network availability be improved?
 - <u>Backup routes</u> within an infrastructure
 - <u>Additional provisioning</u> to extend infrastructure
- RiskRoute optimization framework
 - Identifies backup routes and provisioning options
 - Considers historical and/or real time outage events
- Case study using networks and disaster event data from US
 - Many opportunities to reduce risk!

Level3 and Hurricane Irene

Internet Atlas – Risk Analysis

Data Sharing

- NO!
- Questions? Enquiries?
 - Prof. Barford (pb@cs.wisc.edu)
- Accounts?
 - Prof. Barford (pb@cs.wisc.edu)
 - Ram Durairajan (rkrish@cs.wisc.edu)

Thank you!

- Paul Barford
- Brian Eriksson
- Xin Tang
- Subhadip Ghosh