

Department of Computer Science, Box 8206
North Carolina State University, Raleigh, NC 27695

Networking Practicum
(an excerpt, adapted for use at the CAIDA 2001 Internet

Technology Laboratory Workshop)

Developed by

Rudra Dutta (rdutta@csc.ncsu.edu)

ITL Demo Team

John Streck (jps@ncstate.net)
Mladen A. Vouk (vouk@csc.ncsu.edu)

Marhn Fullmer (mhfullme@eos.ncsu.edu)
Andrew Barnes (ajbarnes@eos.ncsu.edu)

12-15 June 2001

NCSU/ITL/1.0/RD 12-Jun-01 2

Copyright 2001 by NC State University. All Rights Reserved.

Table of Contents

Table of Contents .. 2
SmartBits Exercises – Lab Session Three... 3

3.1. General Remarks ... 3
Measuring Network Characteristics .. 3
Lab setup ... 4

3.2. Running the initial setup ... 5
Becoming Familiar with the SmartBits Tester .. 5
Reserving Ports ... 7
Running the Test ... 7

3.3. Running a Single Flow.. 9
Customizing Latency Distributions... 9
Load Varying Tests ... 9
Emulating Many Hosts.. 10

3.4. Creating Several Flows ... 10
3.5. Introducing Some Complexity .. 10
3.6. Scripting .. 11
3.7. Deliverables for Lab session 3 .. 12

Cleanup.. 12
4. Appendix I – Worksheets .. 13
5. Appendix II – Labs I and II with Discussion Notes .. 17

NCSU/ITL/1.0/RD 12-Jun-01 3

Copyright 2001 by NC State University. All Rights Reserved.

SmartBits1 Exercises – Lab Session Three

3.1. General Remarks

Note: The exercises in this ITL document were developed for the NC State University Network
Engineering Degree hands-on practicum. This practicum accompanies its introductory graduate
level networking courses. The set presented at ITL is an adaptation intended to illustrate to the
students elements of modern end-to-end performance measurements using a modern network
measurement tool, such as SmartBits. This “SmartBits” session is intended to follow two other
sessions given on the networking laboratory “pods.” The preceding exercise set is attached to
this document for illustrative purposes. Please note that all exercises evolve and are regularly
adapted to the specific class needs (curriculum), and that they are given here only as an
illustration of the content and scope ofb a typical lab time slot. For further information
regarding the practicum, please contact Rudra Duta (rdutta@csc.ncsu.edu,
http://www4.ncsu.edu/~rdutta, http://renoir.csc.ncsu.edu/NetLab).

Measuring Network Characteristics

In this third lab session, we shall take a view often adopted in more practical circumstances.
Because the size of a typical internet or even an intranet is large (that is it contains many routers
and other network components connected in arbitrary and complicated topologies), and many
streams of traffic between different network access points share these resources, the behavior of
the network between any two access points is difficult to model theoretically using our
understanding of the behavior of small-scale networks, such as we have been gaining in the last
two lab sessions. Often, the questions that are meaningful to ask in such situations are ones that
relate to the aggregate behavior of the network, such as:

• what is the average throughput between two given hosts?

• what is the delay that we can expect for a packet transmitted from one host to another,
and how it is distributed?

• what is the probability that such a packet will be lost along the way?
When asking such questions, we switch to the view of the network known as "network cloud", as
shown below in Figure 3.1. The representation of the network by a cloud underlines the fact that
we do not know nor particularly care what the details of the network internals are. We simply
look upon the network as a black box providing service to the end points. Our view is that of the
hosts accessing the network at its edges and obtaining networking service from it. We are
interested in characterizing the behavior and performance of the network with this looking-in-
from-outside point of view.

Empirical measurements are a good way of determining such performance metrics. We can, of
course, install measurements software on the hosts which are accessing the network, and use the
hosts themselves for performing the measurements. However, this requires deploying potentially
a large number of hosts, and disrupting normal operation on the hosts selected to make
measurements. Another solution is to use a dedicated combination of hardware and software

1 Spirent Communications (http:/www.spirent.com)

NCSU/ITL/1.0/RD 12-Jun-01 4

Copyright 2001 by NC State University. All Rights Reserved.

which would access the network as a host would do, or as several hosts would do. In other
words, the specialized network testing equipment would emulate the behavior of hosts and
record the behavior of the network in response.

Figure 3.1 Illustration of the “network cloud” and end-clients.

Lab setup

In this lab session, we use such a network testing equipment, the SmartBits tester manufactured
by Spirent Communications. For our network cloud, we will use the simple network we have
used in the last two lab sessions, after making a minor change that will transform it into a
network only slightly more complicated. However, this network, with three shared media and
two routers, is already sufficient to demonstrate the concept. Figure 3.2 below shows the lab
setup with the SmartBits tester introduced.

As before, Z refers to your pod number. Find out what this number is for your group from the lab
administrator.

Notice that in the setup we will be using, the machine H3 has been transformed into a router. We
shall refer to this machine as R3 instead of H3 in this lab session. It retains its original address of
10.Z.2.10, but now has an extra interface enabled, with the address 10.Z.3.1, and it has been set
up to route packets. The machine H2 also has an extra interface, but it is not connected to our test
network cloud. Instead, it serves as a connection to the management interface of the SmartBits
tester. We will use this machine to control the SmartBits tester and perform the tests. The four
extra hosts S1, S2, S3 and S4 that appear in the diagram are really SmartBits ports that will
emulate hosts in our experiments. The IP addresses being used are shown in Figure 3.2.

NCSU/ITL/1.0/RD 12-Jun-01 5

Copyright 2001 by NC State University. All Rights Reserved.

Take a moment to look at the wiring and verify that the network components are connected as
shown in the diagram. Run netstat -rn on H2 and R3 and identify the different interfaces and the
routes related to them.

Figure 3.2 Illustration of the “pod” logical network, including SmartBits (SB) tester.

3.2. Running the initial setup

Becoming Familiar with the SmartBits Tester

In this exercise we walk through some of the capabilities of the SmartBits tester using the
Windows graphical interface to the tester.

Reboot H2 by logging out of the Gnome graphical interface, and choosing the "Reboot"
radiobutton and clicking the "OK" button in the dialog. After the machine reboots and you get
the menu with the different operating systems, choose "Windows NT 4.0" and continue booting.
When you get the login dialog, login using the same userid and password assigned to your group
that you have been using to log in to Linux.

Double click on the icon called "SmartFlow" - the application should start up. It is set up to

NCSU/ITL/1.0/RD 12-Jun-01 6

Copyright 2001 by NC State University. All Rights Reserved.

connect to the SmartBits tester automatically. You should see the 20 ports on the SmartBits tester
represented in a table. Open the file "C:\573_home\ex_3_1.flo", using the "File" menu. A simple
test scenario has been saved in this file.

The ports of the SmartBits tester are listed with a name such as "xx y-z", where xx refers to the
SmartBits tester itself (there is only one in the lab), y refers to the slot (1 or 2), and z refers to the
port on the card in that slot. For the SmartBits 2000, each slot houses a card which has only one
port, so z is always 1. You shall be using four ports on four slots of the tester. Find out which
slots your group is working on from the lab administrator and concentrate on the 4 ports. These
ports will be refered to as ports 1,2,3,4 in the rest of this document.

Complete the following table, writing down the slot numbers on the SmartBits tester assigned to
your pod by the lab administrator, and the actual IP addresses, replacing Z by the actual value of
Z assigned your group by the lab administrator.

Port Slot number assigned IP address in your pod
1
2
3
4

The working area in the SmartFlow window is organized by different tabs. Click the "Card
Setup" tab. This tab contains information pertinent to OSI layers 1 and 2 for the different ports.
Verify that ARP has been setup for all the ports, and that all the ports have different (though
arbitrary) MAC addresses.

Click the "Networks" tab - this contains information pertaining to layer 3. Verify that the port IP
address, network, netmask, and gateway are set for each of the ports 1 to 4 in accordance with
the diagram at the top of this document.

The SmartBits tester tests the network characteristics by generating packets in a series, and
feeding them into the network. The packets traverse the network and come back into the tester, at
which point the tester can measure loss rate, latency, etc. for the packets. Such a stream of
packets going out of one port of the SmartBits and coming in at another, for which the SmartBits
packet extracts one set of measurements, is termed a flow. Thus a flow consists of a series of
packets which are logically part of one set of measurements at the SmartBits, and packets in the
same flow may have different source and destination addresses, both at MAC and IP layers.
(This usage of the term "flow" is somewhat different from the usage commonly found in
literature to refer to single TCP connections, but retains the same flavor of an end-to-end
property rather than something pertaining to the network cloud internals.)

Click the "SmartFlows" tab, this is where you can set up traffic flows that the tester will generate
and analyze on return. Two flows, called "sample_1" and "sample_2", are already set up. For
each flow, the workspace is further divided into more tabs. Examine the information in these tabs
until you can answer the questions below for each of the two flows. Fill out the worksheet by
completing the table and marking the route taken by each of the flows.

NCSU/ITL/1.0/RD 12-Jun-01 7

Copyright 2001 by NC State University. All Rights Reserved.

1. What port of the SmartBits tester will source the flow? Sink it?
2. What MAC address will the frames appear to originate at? Destined to?
3. What IP addresses will these ports emulate in the flow?
4. What transport layer protocol header will be included in the packets?
5. How many bytes will be transferred in each packet?

Also answer the question:

• What network resources (hubs, switches, routers...), if any, will the two flows
share?

Reserving Ports

The SmartBits tester is designed to allow different testing on different networks to proceed at the
same time, using different ports of the tester. Obviously, some protocol is required to determine
which controlling station controls which ports of the SmartBits, otherwise the same port might
receive different control instructions from different groups attempting to perform different tests,
and none of the tests will be successful. SmartBits implements a FCFS reservation protocol by
which any controlling station is allowed to reserve any port not currently in use to perform tests.
Once a port is so reserved, no other controller can reserve or use that port before the original
controller has finished testing and released it.

• Go to the "Card Setup" tab and look at the column called "Multiuser". Verify that all
ports are unreserved initially. Reserve the slots which have been assigned to your group
by the lab administrator.

• To verify that the same ports cannot be reserved by more than one controller, find out
from the lab administrator which ports have been reserved by another group. Try to
reserve those ports and verify that you receive an error message, and are unable to reserve
them.

• Note:If some ports were already reserved by the time you started the SmartFlow
application, those ports are completely invisible to you, so you cannot even attempt to
reserve them.

Running the Test
Now we shall run the different kind of tests that SmartBits is capable of performing using these
flows. Note the following information about the SmartFlow application:

• The left side of the screen has two toolbars, each with icons such as "Throughput",
"Latency", etc. - but at any time only one of these is visible. The first one is to setup
characteristics of the tester and the flows we design, and to run the test. Whenever you
run the test, the second toolbar comes up. This is the one in which you view results of the
tests we are running. After the test is complete and you have finished viewing results, you
must click on "Setup and Run" to get back to the Setup and Run screen to modify the
tests and run them again.

• Results persist from one test to another. For any one type of test, such as "Latency", you

NCSU/ITL/1.0/RD 12-Jun-01 8

Copyright 2001 by NC State University. All Rights Reserved.

cannot view results before you have performed the test even once. However, once you
have performed the test, you will see the same results any time you go to the "Results"
screen and click on "Latency". If you have changed the tests, the old results are not
automatically expired. Thus you must go back to "Setup and Run" and rerun the test if
you want to see updated results.

• For the same reason, you will get a dialog box asking "Overwrite the results?" every time
you run a test after the first time. Answer "Yes" to rerun the test and get new results.

• Very occasionally, you may get an error message such "Learning failed on port x" or
"Step cannot be less than zero" when you try to run a test even though your test
parameters are correct. This appears to be because of a flaw in the SmartFlow GUI
application - it merely needs to perform some initialization that it did not do
automatically. If this happens, visit all the major tabs in "Setup and Run", and all the
subtabs in each, without changing any data. Then try running the test again, the error
should be resolved.

• Messages appear on the status bar at the bottom of the window when you run a test,
indicating that

o Ports are being setup

o ARP addresses are being learned

o Flows are being setup

o Traffic is being generated and received

o Test is successfully concluded

You must wait until the test is successfully concluded before interpreting the results.

• In the "Results" screen, the results appear in different formats: a 3-D graphical chart, a
summary table, a detail table. Different formats are most helpful for different tests.
Examine all of them to find out which is most appropriate for a given test.

While running the tests, we shall monitor the packets flowing over the network using R3. We
shall use tcpdump for the purpose. From our earlier lab sessions, we know that tcpdump is a
powerful tool, but in this lab we will be using it only to visually verify that packets are
flowing across the medium. On R3, open a shell or a virtual console, and log in using the
id/password provided. Run the following command:

• tcpdump -n
Leave this tcpdump running throughout this lab session. Terminate it using Ctl-C when you are
finished with the lab.

Go back to H2, the machine acting as SmartBits controller. On the left of the workspace, there is
a toolbar with the different tests. Click the top one, called "Throughput". You will see messages
in the status bar at the bottom of the window, band see the following : When traffic is being
generated, you should be able to see packets flowing by the tcpdump at R3. If you do not, there
is an error.

NCSU/ITL/1.0/RD 12-Jun-01 9

Copyright 2001 by NC State University. All Rights Reserved.

After the test is concluded, the Results screen will come up. In all formats, there will be data for
the two flows individually as well as a total. Look at the different results representations and
answer the following questions:

1. Is the throughput 100% for either of the flows? If not, why do you think this is?

2. Which flow was able to transfer the greater amount of data?

3. Look at the tcpdump output on R3. Verify that the packets seen by R3 have the source
and destination IP addresses and ports that we had set up in the flows.

• Note: The results for throughput is presented in the same units as Frame loss, that is it is
presented in inverse units.

Now run the "Frame Loss" and "Latency" tests as well, and examine the results. Verify that the
results are consistent with the lab setup, as well as within themselves.

3.3. Running a Single Flow

Go to the "SmartFlows" tab and delete the flow "sample_1" by selecting it in the list of flows and
clicking the button with the red "X" on it. Now we only have one flow. Run the "Frame Loss"
test again. Comment on the nature of the results this time as opposed to in the last exercise.
Customizing Latency Distributions
Run the "Latency Distribution" test. Once the test is completed, you will see a frequency
distribution of the latency values observed. The distribution is presented by showing the number
of packets that were seen to have a latency that falls into a given range of latency values or
"bucket" - for example, one bucket may represent the range from 500 microseconds to 1000
microseconds, while the next may represetnt the range from 1000 to 5000 microseconds, and so
onl. In the results we generated, most of the frames fall in the same bucket, so the distribution is
not very informative. We can customize these buckets and fine tune them for our network cloud
to get more useful information out of the test.

1. Go back to the "Setup and Run" screen and go to the "Test Setup" tab. Go to the
"Individual tests" subtab. Here you can specify the buckets that should be used for the
frequency distribution. Change the buckets to be used: as a first example, change the
50,000 microseconds entry to read 75,000 microseconds. Run the "Latency Distribution"
test again. See if the results carry any more information this time.

2. Change the buckets a few more time until you have significant occupancy in at least four
of them.

Load Varying Tests
Now we will see how SmartBits automates testing the same characteristics at different loads. Go
to the "Test Setup" tab again, and then to the "Individual Tests" subtab. We have been getting
only one test run each time because we had the minimum and maximum set equal. Now change
the initial load to 10%, step load to 10%, and leave the maximum at 100%.

NCSU/ITL/1.0/RD 12-Jun-01 10

Copyright 2001 by NC State University. All Rights Reserved.

• Run the throughput test again. Notice that the results graph is now built in increments,
and the flow is started and stopped ten times. Look at the tcpdump output, it should be
visibly obvious that initially the flow is slower and speeds up on later iterations.

Emulating Many Hosts

Next we see how to emulate many hosts using just one SmartBits port. Go to the "SmartFlows"
tab and the "Traffic" subtab. In the lower part of the window, "Variable Fields within Flow",
check the "SRC IP address" checkbox. Enter a value of 200 as the variable count. This specifies
that each time a packet is sent out, it will be sent out with a source IP address incremented by 1
in the last octet. The IP address will cycle through 200 addresses. Thus to the network being
tested, there appears to be traffic coming from 200 different hosts. Run the throughput test again.
The results will look the same as before, but while the flow is being transmitted, the tcpdump
running on R3 will record the packets as coming from different IP addresses. You will see that
the addresses go from 10 in the last octet to 209, in consecutive numbers.

Using the entry field for "Variable Count" as above, and entry fields on the "IP" subtab, make the
flow emulate packets which come from addresses which go from 2, 4, 6, ... 200 in the last octet.
Verify that you have correctly set the parameters by running the throughput test again and
observing the packets on the tcpdump output.

3.4. Creating Several Flows

Delete the remaining flow. Now there are no flows. Add flows with the following properties,
using the "SmartFlows" tab.

• testflow_1: From port 1 to port 4, source address 10.Z.1.30, destination address
10.Z.3.10, no next protocol to IP, no variable fields.

• testflow_2: From port 3 to port 2, TCP protocol, source address starting at 10.Z.2.30, last
octet varying 30, 31, ... 101, source port starting at 1024 and varying, no other variation,
destination port 9 (DISCARD service).

Make sure that the "Test Options" - "Individual tests" setup is as before, that is, initial load 10%,
step 10%, final 100%.
Go to the "Options" tab. The three big buttons at the bottom provide a way to verify a new flow
setup in stages, helping in locating errors. Click each of the three buttons in turn; for each one
wait until you get a success message on the status bar or an error message before proceeding.

Once you have successfully gone through all three setup stages, you can run the various
experiments and view the output. Try to understand the output intuitively. If you feel there is
something you cannot explain, try to see if there is an error you can deduce.

3.5. Introducing Some Complexity

Since we have been using our simple network as a network cloud, it may have appeared that we
could have obtained the results we have obtained using the SmartBits tester simply by applying
analytical method to our knowledge of the network. It is true that the simple network we have

NCSU/ITL/1.0/RD 12-Jun-01 11

Copyright 2001 by NC State University. All Rights Reserved.

been using is amenable to analysis, though this characteristic would quickly be lost with
increasing size and complexity of the network. However, even this simple network may not be
easy to analyze if we assume more realistic traffic scenarios. We have already considered several
streams of traffic flowing in the network along different routes. Because some resources are
shared for these traffic streams, while others are not, it is not easy to predict how the network
will behave from the point of view of each individual traffic stream, but it is still possible to
measure it. To add another measure of realism, we drop some packets at the routers in our
network to simulate congestion in this exercise.
On both R and R3, execute the following from a command line:

• forwarding
This is the same tool we used in the second lab session. When executed without any arguments,
it will continue to switch the packet forwarding functions on the routers on and off randomly
until it is killed from the command line using Ctl-C.
Once forwarding is running on both routers, run the different tests using the SmartBits again.
This time the output will be less predictable, and you may see noticeably lower throughputs and
higher frame loss rates. This once again points out the fact that even comparatively simple
networks can be difficult to model, and measurements will be often the only practical way of
evaluating network characteristics.

3.6. Scripting

While a graphical user interface as the one we have been using to control the SmartBits tester is
user friendly and intuitive, it has the disadvantage that the operation is more difficult to automate
for streamlining and reliable repeatability. In such situations, it is convenient to have a command
or programming interface which, in effect, implements a language that can be used to program,
or script, the tester. Scripts in this language can also be produced in an automatic or semi-
automatic fashion. SmartBits provides such a scripting interface, and the scripts can be run to
control test scenarios in both Windows and Linux operating systems. In this exercise, we walk
through running a script under Linux. Exactly similar scripts can run under Windows as well.

Close the SmartFlows application. Reboot H2 by selecting "Shutdown" from the Windows Start
menu, and selecting "Restart the computer". After the machine reboots and you get the menu
with the different operating systems, choose "Linux" and continue booting. (You may have to
make this choice twice.) When you get the login dialog, login using your usual id and password.

Under your home directory, you will find a directory called SmartBitApps/ containing some
scripts. Use an editor such as vi or pico to view the file called 'run_latency'. It contains only a
few lines, which look like the following:

if ($?LD_LIBRARY_PATH < 1) then
setenv LD_LIBRARY_PATH /

endif

setenv LD_LIBRARY_PATH ".:$LD_LIBRARY_PATH"
echo "Ready to run TCL script "

NCSU/ITL/1.0/RD 12-Jun-01 12

Copyright 2001 by NC State University. All Rights Reserved.

./sctcl.out SinglePairLatency.tcl

This file simply sets some environment variables and runs the customized TCL shell that
SmartBits uses to run its scripts. The real script name is supplied as an argument to the TCL
shell, and is called 'SinglePairLatency.tcl'.

Close the file 'run_latency' and view the file 'SinglePairLatency.tcl'. The comments tell you what
each piece of script code does. Verify that the sequence of various setup and running the
experiment is the same as we followed using the SmartFlows application above. Identify the
variables used for setup and answer the following questions. Complete the worksheet.

1. How many flows are being set up? Answer the following questions for each.
2. What port of the SmartBits tester will source the flow? Sink it?
3. What MAC address will the frames appear to originate at? Destined to?
4. What IP addresses will these ports emulate in the flow?
5. What transport layer protocol header will be included in the packets?
6. How many bytes will be transferred in each packet?
7. What test will be run by the script?

Close the file. From a virtual console, execute the script by running:

• run_latency

When the test is complete, some data is presented textually on the screen. This data is the result
of the test, in similar format to the "Summary" representation in the SmartFlows GUI
application. In a realistic scenario, this data could be captured and parsed programmatically and
saved to a data repository.

Try to interpret the data. If you feel there is something you cannot explain, try to see if there is an
error you can deduce.

• Change the appropriate settings in the script to measure the latency again, but
vary the source IP address to cycle from 10.8.1.40 to 10.8.1.239, the last octet
varying by 1 each time. Run the script.

3.7. Deliverables for Lab session 3

• No program output is needed. For each exercise 3.x above, provide all answers in
conclusions.3.x

Cleanup
Please delete any temporary files you produced during Lab 3, on any of the pod machines.

NCSU/ITL/1.0/RD 12-Jun-01 13

Copyright 2001 by NC State University. All Rights Reserved.

4. Appendix I – Worksheets

• Network topology

• Flows

• Scripting

R R3
(H3)

H1

H2

S1 S2 S3 S4

SB

M1
M2

MSB

Sample Flows Worksheet

Flow Name
SmartBit source port
SmartBit destination port
Source MAC address
Destination MAC address
Source IP address
Destination IP address
Transport layer protocol
Bytes transferred per packet

Flow Name
SmartBit source port
SmartBit destination port
Source MAC address
Destination MAC address
Source IP address
Destination IP address
Transport layer protocol
Bytes transferred per packet

Flow Name
SmartBit source port
SmartBit destination port
Source MAC address
Destination MAC address
Source IP address
Destination IP address
Transport layer protocol
Bytes transferred per packet

Scripting Worksheet

Number of flows:
Test being run:

SmartBit source port
SmartBit destination port
Source MAC address
Destination MAC address
Source IP address
Destination IP address
Transport layer protocol
Bytes transferred per packet

SmartBit source port
SmartBit destination port
Source MAC address
Destination MAC address
Source IP address
Destination IP address
Transport layer protocol
Bytes transferred per packet

NCSU/ITL/1.0/RD 12-Jun-01 17

Copyright 2001 by NC State University. All Rights Reserved.

5. Appendix II – Labs I and II with Discussion Notes

• Lab1 Discussion

• Lab1

• Lab2 Discussion

• Lab2

Overview - Before You Begin

This document provides an overview to the laboratory experiment sessions for the CSC/ECE
573 Internet Protocols and Architectures course. This overview and the suggested readings
should be read before beginning the lab since lab time is limited. We suggest that you bring your
course textbook and a calculator to the lab.

The lab is physically in Suite 150 room 101 (Networking Lab) at Ventures II in Centennial
Campus. The machines you will be working on are to your left as you enter the lab.

The lab exercises are in the following pages:

Lab 1 Exercises
Lab 2 Exercises

There is also a discussion page available for each of the two lab sessions:

Lab 1 Discussion
Lab 2 Discussion

All lab documents are available in electronic form in each lab cluster, on the machine H2 in the
directory /net_analysis/docs. For the meaning of "cluster" in this context, see below in the
Software/OS Setup. The exact meaning of H2 will be defined in the first exercise of Lab 1.

Authority, Accountability, Responsibility
The CSC/ECE 573 Networking Lab offers the privilege of experimenting with a computer
network at the level of a network administrator, providing the opportunity to witness the
theoretical principles learned in the classroom in the reality of a physical network. In particular,
you will experiment with:

ARP
IP Routing
TCP flow control in the presence/absence of network congestion

Realize that this privilege carries with it a certain responsibility, to behave honestly and in
accordance with the instructions of the lab materials. Intentional misuse of lab equipment will
result in a failing grade in the course plus possible disciplinary action. The following rules apply
at all times while working in the networking lab:

Do not go behind the tables.
Do not remove/insert cables.
Don't move equipment here or there.
Don't move equipment anywhere.

Software/OS Setup

Computers and Operating Systems

1 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

The machines in the networking lab are arranged in nine identical "clusters". Each cluster is
isolated from the others and from the rest of the world, giving you a small "network world" of
your own to conduct your experiment. There are nine columns in the lab which each have the
word "Cluster" on it, followed by one of the numbers 1,3,4,5,6,7,8,11,12. (There is no cluster
2,9 and 10.) Choose a cluster to work on and note the cluster number for use in your
experiments. You will also need to provide Dr. Martin or the TA present with your cluster
number so that your work can be graded. (Try to work on the same cluster each time you come
in. Otherwise, provide Dr. Martin or the TA present with each cluster number.) The IP
addresses assigned to the machines in your cluster depend on the cluster number. In the
exercises we use the symbol 'Z' to refer to the cluster number when necessary.

Each cluster contains four computers and two monitors. All the computers are HP-Kayak
RedHat Linux 7.0.

The four computers are referred to in the exercises as H1, H2, H3 and R. The first exercise of
lab 1 matches the names to the computers. All are PCs running the Linux operating system.
Linux is a UNIX family operating system, which means that it is similar to other UNIX systems
such as BSD, Solaris, Ultrix or FreeBSD that you might be familiar with.

Login Access

Each student will receive a userid/password combination from Dr. Martin or the TA present.
Your userid will be of the form csc573gxx where xx is a non-zero two digit number; e.g.
csc573g53 may be the userid assigned to a particular user. Your userid and password work for
all the Linux machines. Do not change the password for your group, because they are separately
set on each machine.

IP Address

The machines in the lab make up a private network which uses IP addresses that are invalid on
the public internet. The private network is isolated from the public internet. This is a
precautionary procedure, so that simple mistakes do not result in possibly disastrous
consequences on the public network. Thus this measure will protect you from inadvertently
affecting the public network, while allowing you to study the network undisturbed by general
internet traffic. These IP addresses are of the form 10.A.B.C and are clearly labeled on each
machine. Labels of the form 152.A.B.C can be ignored.

Display Sharing

The three PCs H1, H2 and R share the same monitor, keyboard and mouse by means of a
Keyboard/Mouse/Monitor sharing switch (or sharing switch for short). The sharing switch in
each cluster is the black box between the machines. Pressing the "Select" button selects each of
the different machines connected to the sharing switch.

The Machine H3 has its own dedicated monitor, keyboard, and mouse which are placed on the
table.

Linux virtual consoles

2 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

The Linux machines are running Red Hat 7.0 with the Gnome X interface. This system provides
seven virtual consoles which can be accessed at any time by pressing the key combinations
Ctl-Alt-F1 for the first virtual console, Ctl-Alt-F2 for the second, ..., and Ctl-Alt-F7 for the
seventh. The X interface always runs on the seventh virtual console. The other consoles are the
traditional VT100 "black screen" console. You may be logged onto several consoles at the same
time; the Linux system regards you as multiple users who are concurrently logged in using
different pseudoterminal devices.

Note that all seven consoles are completely independent. You remain logged on to one while
logging out from another. It is possible to come in and directly switch to virtual console 1 and
log in, without ever logging in to the X system on console 7, and vice versa. Please verify that
you are logged off from all the consoles of all machines in your cluster before leaving.

If you are comfortable using a GUI, you may want to use only console 7 and leave the other
consoles alone. Since you can open multiple windows (xterms) in the X system GUI, you can do
everything you need to do using only this console.

Please note to avoid confusion that we are using a hardware sharing switch to share the monitor
between H1, H2 and R, and among these H1, H2 and R use this virtual console mechanism (in
software) to share the console between the seven virtual consoles on each machine. H3 uses the
virtual console mechanism to share its dedicated console between its virtual consoles.

EOS/UNITY Connectivity
There is no access to EOS/UNITY from the lab machines, since the experimental setup is in a
private network shielded from the outside.

A single EOS/UNITY public workstation may be available in the lab for CSC/ECE573 students,
if time permits its installation. This is not finalized at the time of this writing. Please check
when you get to the lab.

Tools You Will Use

Standard Utilities

We shall use some standard tools provided on UNIX for network management and monitoring,
such as arp, ping, netstat, and route. Any standard UNIX system, such as public EOS
stations running Solaris, as well as the machines in the lab running Linux, will have the manual
pages for all of these installed. There may be minor differences in the options or actions of these
utilities in different versions of UNIX, but the basic concepts remain the same. Whenever a lab
exercise employs a specific option, the option's action will be defined. We suggest you read the
manual pages before you come to the lab.

Some less common utilities are described below.

tcpdump

tcpdump is a packet capture utility on UNIX, developed by the people at Lawrence Berkley
Laboratories. It puts the network interface card in full promiscuous mode, and dumps the packet
header data on the standard output. Thus by running tcpdump on one machine you can view all
the traffic in the LAN the machine is on. We shall be using it to view TCP packets as well as

3 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

other things like ARP or UDP traffic.

Each line of the output of tcpdump represents one packet that was observed on the network.
tcpdump recognizes the protocol for the packet (ARP, TCP, UDP, etc.) and prints some of the
relevant header information. Filters can be provided to specify that only some types of packets
for some hosts or networks are to be observed, not all; such filters are not used in the exercises.
Read the manual pages for tcpdump to find out how to interpret the output. The book TCP/IP
Illustrated, Vol I : The Protocols by W. Richard Stevens also has material on tcpdump output
format. The lab exercises and Discussion pages also indicate how to interpret the tcpdump
output.

tcpdump is started from the command line (VT or xterm window). Once you have finished
running the experiment, kill it with a Ctl-C.

The exercises ask you to run tcpdump, observe the output, and save it as part of your results. If
you are comfortable using a GUI, then you can run tcpdump in an xterm window and
cut-and-paste it to an editor. If you must use a VT console, then the best option is to redirect the
output to a file and then view the file once you are done running the experiment. The exercises
may ask you to do the same for other commands besides tcpdump.

While tcpdump can normally only be run by the root user, you are enabled to run it as trusted
users. Please do not use tcpdump in any way other than that specifically described in the
exercises.

Never run more than one instance of tcpdump at the same time on a machine.

The initial part of the tcpdump manual page, which lists the command line options, is provided
below:

TCPDUMP(1) TCPDUMP(1)

NAME
tcpdump - dump traffic on a network

SYNOPSIS
tcpdump [-adeflnNOpqStvx] [-c count] [-F file]

[-i interface] [-r file] [-s snaplen]
[-T type] [-w file] [expression]

DESCRIPTION Tcpdump prints out the headers of packets on a network
interface that match the boolean expression.

Under Linux: You must be root or it must be installed setuid to
root.

OPTIONS
-a Attempt to convert network and broadcast addresses to names.

-c Exit after receiving count packets.

-n Don't convert addresses (i.e., host addresses, port numbers,
etc.) to names.

-q Quick (quiet?) output. Print less protocol information so
output lines are shorter.

-S Print absolute, rather than relative, TCP sequence numbers.

-t Don't print a timestamp on each dump line.

4 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

-v (Slightly more) verbose output. For example, the time to
live and type of service information in an IP packet is
printed.

More information on tcpdump can be found at LBNL's Network Research Group at
"http://www-nrg.ee.lbl.gov/".

oursock

oursock is a small socket utility developed specifically for this lab. You can use oursock to
send zero or more bytes from either H1 or H2 to H3. On the command line you can specify
several options: (1) whether to use TCP or UDP, (2) the total number of bytes to send, and (3)
for UDP, the number of bytes to be sent per packet.

The data are sent to the discard service on H3 and thus play no role in the experiment. We are
only interested in the traffic that is created on the network.

gnuplot

gnuplot is a plotting utility for UNIX and other systems. It can convert data into plots in several
formats, and also display it on screen for an X windowing system. We will use gnuplot to
graphically interpret bulk traffic data related to TCP data transfer.

Despite the name, gnuplot is not related to the FSF. You can find more information on
gnuplot at the Gnuplot homepage at "http://www.cs.dartmouth.edu/gnuplot_info.html"
.

You will only need to use gnuplot for the second lab session.

About Editing

To view the Overview, Discussion, and Lab Exercises documents, use Netscape or the Gnome
Help Browser. (The Help Browser opens automatically at login; simply type in
"/net_analysis/docs/overview.html"). In addition, you will need to read and edit plain text files
on the Linux machines. The possibilities are:

vi: The all-purpose text editor that comes with almost all versions of UNIX. It is
completely based on a text terminal and can be used either on a VT or in an xterm
window. Vi uses separate command and editing modes. Unless you have used vi before,
we do not suggest using it in the lab.
emacs: The version on Linux provides a simple menu-driven interface running on a text
terminal. Even if you are not familiar with emacs, you can use the menus to find your
way.
pico: This is probably intermediate in difficulty to vi and emacs. It also runs on a text
terminal, and provides menus to help you do your editing. Your options may be more
limited than with emacs.

Since these are all text terminal based editors, you can run them on a "black screen" VT or in an
xterm window in the X windowing system. The advantage of the latter is that it is easy to
cut-and-paste text between an xterm in which you obtained the results and an xterm running the
editor.

5 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

Transferring Files

During the exercises, you will sometimes produce an output file on one machine by capturing
the output of a command, and then need to transfer the output to a file on another machine. You
can do this easily using the ftp utility. If you are not familiar with ftp, read the
corresponding manual pages before you come to the lab.

We provide an example of using ftp below. Assume you have produced the file output1.txt
on H1 and need to transfer it to H3. On H3, you wish to save it as the file netstat.1.3.1 in the
directory results under your home directory. If the address of H3 is 10.4.2.10, then ftp to that
address from the local directory which contains your file, as shown below.

ftp 10.4.2.10
Connected to 10.4.2.10.
220 [H3 machine private name] FTP server (Version wu-2.5.0(1) Tue Sep 21
16:48:12 EDT 1999) ready.
Name : c573gxx
331 Password required for c573gxx
Password: [Type in password, not echoed]
230 User c573gxx logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd results
250 CWD command successful.
ftp> ascii
200 Type set to A.
ftp> put output1.txt netstat.1.3.1
local: output1.txt remote: netstat.1.3.1
200 PORT command successful.
150 Opening ASCII mode data connection for netstat.1.3.1.
226 Transfer complete.
7 bytes sent in 7.3e-05 secs (94 Kbytes/sec)
ftp> bye
221-You have transferred 6 bytes in 1 files.
221-Total traffic for this session was 477 bytes in 1 transfers.
221-Thank you for using the FTP service on [H3 machine private name].
221 Goodbye.

Your input is indicated by bold letters above. After logging in, change to the directory where the
file needs to be placed, set the transfer mode to ASCII characters, and transfer the files. Then
terminate the connection.

Doing the exercises
Each exercise asks you to perform specific tasks on the machines of your cluster and then
observe and possibly also save the results. Then you must answer some questions by looking at
the data you have obtained, and save your conclusions in separate files. Each exercise tells you
exactly what files you need to deliver for that exercise.

Every time you create a login session on one of the machines (by logging in at a console, a
virtual console, etc.) and every time you exit one (by logging out) the system runs some tasks
which may invalidate your observations. For this reason, you should not log in or out in any
session on any of the machines while you are in the middle of an exercise. For each exercise, get
all the login shells and windows you need, then perform the exercise without creating new ones
or exiting existing ones, then exit as necessary.

You may need more than one time slot to complete the entire lab session. We suggest that the

6 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

first time you concentrate on performing the tasks specified in the exercises and saving your
observation files. Then you can come to the lab, having though about the output you have seen,
and create your conclusions files.

No textbooks or reference material will be available in the lab. You should bring your textbooks
and any notes, books or other reference material you may want to use. Volumes 1 and 3 of
Internetworking with TCP/IP by Comer and TCP/IP Illustrated, Vol I : The Protocols by W.
Richard Stevens contain all the material you need to do the exercises.

Submitting Results
All your results should be in a directory named results on H3 in your cluster under your home
directory. We shall refer to this directory as "Your results directory" in the exercises. Your
home directory is /home/csc573gxx and you should be in this directory when you log in. All
your results must be in plain text files. For the most part, this will be text you see as the output
of some command you have run, or text you simply type in (such as "The average throughput is :
7 MB/s"). Each exercise tells you exactly which results are expected to be in what files.

Please do not leave any result files on any machine other than in the results directory on
H3.

Do not save any file (even temporary ones) on the Linux machines outside your group's
home directory.

Good Luck
That's it! You can go off and do those lab exercises now, and we hope you enjoy it.

Go back to the top of the page.

7 of 7 6/27/2001 10:33 PM

Overview of Lab sessions for CSC/ECE 573 - Internet Protocols and Architectures file:///C|/Vouk/573/overview.htm

Discussion of Exercises for First Lab Session
Overview | Exercises for Lab 1

1.1 Becoming Familiar With the Lab Setup
The goal of this exercise is to become familiar with the machines in the cluster in terms of type,
operating system, name, and network properties such as addresses, subnet, and routing. At the
end of this exercise you should be able to think "H1" and immediately point to the machine in
the cluster and remember its address(es) and subnet.

If you cannot decide which network a machine is in, it may be in both networks. Think about
this question: Can a machine which acts as a router (gateway) not be on more than one network?

1.2 ARP: Address Resolution Protocol
Computer networking management for internetworks has traditionally been done on UNIX
operating systems, because most computers were running UNIX when the designers built
TCP/IP, the ARPANET, and the Internet. As more computers running operating systems other
than UNIX connected to the Internet, similar management systems were created for these
operating systems. In Windows, for example, essential network management tasks that must be
carried out on every machine (such as setting the IP address and mask) are usually implemented
with a GUI. Less essential tasks are carried out with programs that run from the command line
and retain a distinctly UNIX flavor. Two examples are arp and ping, used in this exercise.
Sometimes GUI programs are available for the same task, not as part of the operating system but
as a program that must be acquired separately.

This exercise introduces tcpdump and uses it to examine headers of packets that are observed on
the local physical network. It is important to remember that there are two physical networks in
the cluster, and that tcpdump is running on the network connecting R and H3. tcpdump will
therefore capture all packets traveling on that network, but not packets in the other physical
network (connecting H1, H2 and R).

In a line of tcpdump output (also called a packet trace or packet header dump), the first quantity
is the timestamp. In particular, the timestamp is the time when the packet was observed on the
wire, according to the clock on the machine running tcpdump. Though the time is given with
microsecond precision, the network interface card may not have the same accuracy, so the last
digit or two may not be significant.

The rest of the line is header data for the packet. tcpdump interprets as much of the header as it
can, recognizing many of the common protocols. Thus when an ARP packet is recognized,
tcpdump looks in the header and reports (1) whether it is an ARP request or reply and (2) the IP
addresses of the machines involved. Only a selection of the information in the packet is
displayed, with the aim of making the packet trace more readable. For example, the hardware
(MAC) address for the requesting host is usually sent in an ARP request, but it is not displayed
in the packet trace.

When tcpdump observes a packet using an IP protocol, it extracts and displays the relevant
header information. In this exercise tcpdump captures some ICMP packets and displays the

1 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

ICMP type and code field values. The ICMP traffic is generated by the ping command, which
sends ICMP_ECHOREQUEST packets and receives the ICMP_ECHO packets. ping verifies
that a host is up, reachable, and responding to ICMP. In later exercises, we shall see header
dumps of TCP and UDP packets as well.

1.3 Discovering Routing
The three tools we use in this exercise give us information about routing, but they report
different information that is acquired using different methods. You should read the manual
pages for each of these if you have not already done so.

netstat can be used to report the network related status of a host, and in particular we use it to
report the routing table. Thus the information we obtain is purely local, and has the
"next-hop-only" information characteristic of the IP routing table philosophy. In contrast,
traceroute and ping both send data onto the network, and extract information from the data
received from other hosts or routers on the network.

In looking at the routing table, we are most interested in the first few fields of each route. Each
route starts with a destination field, which holds the IP address of the destination host or
network. The next few fields specify the subnet mask and the address of the next hop router
(gateway) where packets should be forwarded. To answer some of the questions, you need to
interpret these fields to describe the route; to answer others, you need to hand-trace the routing
decisions by looking at the routing tables.

Let us consider some of the output we get from a Linux machine when we run netstat -rn.
The output on a Windows machine is very similar and can be similarly interpreted. Since we are
using subnetting (the de facto standard), a route of the form:

<Destination> <Gateway> <Genmask>

can be interpreted as: if the destination address for a packet, when AND-ed with <Genmask>, is
equal to the <Destination>, then this packet may be forwarded to <Gateway>. As we know,
there may be multiple routes to a destination, and the order of the search should be for a route to
a host, then for one to a network, then for a default. (See TCP/IP Illustrated by Stevens or any
other text for details.) With subnetting, how are such routes distinguished? Naturally, if the
<Genmask> is complete (255.255.255.255), then we end up comparing the whole destination
address to <Destination>; thus this route is a route to a host. If the <Genmask> has some
trailing zeroes, then we ignore the least significant bits of the destination address before we
compare it to <Destination>; thus all hosts in a certain network will match this route. Lastly, if
the <Genmask> is all zeroes and so is the <Destination>, then any destination address we care
to compare will match; such a route is a default route.

Note that for routes to networks, when <Genmask> has trailing zeroes, the <Destination> field
must have at least the same number of trailing zeroes. If not, no address will ever match that
route. This rule is in keeping with the rule of zeroes in the host part of an address denoting the
network itself. This rule also applies to the <Gateway> field. For some destinations, the host
may its own <Gateway>. This is the case, for example, for any destination on the same physical
network, and for any destination which is really the host itself (either using an explicit address
or the loopback address). In that case the <Gateway> might be listed as 0.0.0.0 , which would
have the meaning "this host on this network".

By default, traceroute attempts to utilize the ICMP_TIME_EXCEEDED message. It sends out

2 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

a succession of datagrams destined for the address we wish to trace the route to, each with a
higher value of the time-to-live field (starting at one). This scheme elicits successive
ICMP_TIME_EXCEEDED messages from successive routers along the way, until finally we
obtain the complete route that the datagram has taken to the destination. This mechanism is
vulnerable to route changes in intermediate routers during operation. However, for a fairly stable
network this is not a big problem.

As we have seen before, ping uses the ICMP_ECHO mechanism. In this exercise, we turn on
the Record Route option on the ECHO packets. In this case, only one packet is transmitted to the
destination and only one comes back, but the route (both outgoing and incoming) is recorded in
its header. The manual page mentions that many systems ignore this option : to see a case in
point ping R from H1. Now compare the output with the output you got when you ping-ed H2
from H1. You see H2 twice as expected (once coming and once going), but you see R only once
because R ignores this option on the outgoing packet.

Between traceroute and ping (with the Record Route option), traceroute is more likely to
work in any given situation. However, if the Record Route option works, then ping returns
more information, because information is saved both going and coming. Any intermediate router
will show up with different IP addresses on the outgoing and incoming path, because the packet
goes out different interfaces. Now if the outgoing and incoming packets go through the same
sequence of routers, then it is possible to conclude the IP address of both the outgoing and
incoming interfaces on each router from the route recorded. Consider the following route, where
two hosts H1 and H3 are connected over a sequence of routers Ri. For each Ri, the address
closer to H1 is Ri1 and the address closer to H3 is Ri2.

---- ---- ---- ---- ---- ---- ----
H1	--	R1	--	R2	--	R3	--	R4	--	R5	--	H3
---- ---- ---- ---- ---- ---- ----

Then the route we expect to see recorded when we ping H3 from H1 is:

H1-R12-R22-R32-R42-R52-H3-H3-R51-R41-R31-R21-R11-H1

The great disadvantage is that this method does not work beyond a few hops because there is
only space for nine addresses to be recorded.

A special note with respect to the host specific route experiment of exercise 1.3.2 .
Normally, such an obviously redundant route as the one used in this exercise would not be
allowed to have long-term effect on the routing in the internet. As soon as H1 sends the first
packet to H2 through R, R would send an ICMP REDIRECT message to H1, instructing H1 to
reach H2 directly. From there on, H1 would send messages to H2 just as if the host specific
route had not been added, until the redirect expired after some time. For the purpose of
demonstration, the mechanism to accept redirect messages has been disabled on the H1 machine
in all the clusters. However, it appears that this was not correctly set for all the clusters, so some
student groups may have conducted this experiment while the redirect was still being accepted.
If you are one of these groups, then you will see the following behavior - if you run traceroute
after you add the route using route_H2_through_R, you will see R in the route to H2, but if you
run traceroute again, you will not see R included, the route will be back to normal. If you see
this behavior and note it down (even better, try to explain it), it is okay. If you want to see the
expected output, then you must run traceroute only once, right after you run
route_H2_through_R. If you have to run traceroute again (because you did not capture the
output or whatever), then you should run clear_H2_route, then run route_H2_through_R

3 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

again, and finally run traceroute again. You need to do this each time you want to run
traceroute in this experiment. We apologize for the mistake and the resulting inconvenience.

In the toy "network world" which your cluster represents, all of the above are good methods to
investigate routing, and they should all give consistent results because everything has been
configured correctly and consistently. In the real world, we need all the tools that are available
(including far more powerful ones than the ones we use here) to observe the network, and
discrepancies that we may observe are valuable indicators to things that might be wrong in the
network.

The last two questions of this section are purely thought-experiments, but some (not all!) parts
of the answer have already been obtained in exercise 1.2 . We hope that going through this
sequence mentally after understanding the routing will make things clearer for you.

1.4 The Transmission Control Protocol (TCP)

1.4.1 TCP Synchronization (handshake)

In this exercise, we use oursock for the first time, and capture the packet headers sent by it. The
internal checkpoints of oursock correspond to the following:

1. Parsed input
2. Initialized some internal data
3. Initialized address information
4. Created socket
5. Connected socket
6. Sent full packets of data
7. Sent any leftover data
8. Closed connection

If you get any errors from oursock, it is probably an internal error you can do nothing about.
Note the checkpoint where the error happened, since this information can be used to fix this
problem later.

When dumping the packet headers for TCP or UDP packets, tcpdump uses the convention of
including the port number as a fifth dotted element in the dotted decimal address string. Under
normal circumstances, each packet has two sequence numbers displayed by tcpdump as
explained in the exercise. For the acknowledgment, there is a single sequence number. It is
important to note that the acknowledgment sequence number is the sequence number of the next
byte the receiver expects to receive, not one that it has already received. Also, the SYN and FIN
packets themselves incur sequence number increments; look closely at the output produced in
this exercise to see this.

1.4.2 Sequence Numbers

In this exercise we ask you to follow the growth of sequence numbers. TCP computes the MSS
taking into account the fact that 20 bytes of IP header will be incurred in each packet after TCP
finishes building it. TCP sends MSS bytes of user data in each packet while it still has data to
send. The actual amount of user data in a given packet can be obtained by taking the difference
of the two sequence numbers provided for data packets. For your convenience, tcpdump lists
this difference in parentheses after the starting and ending sequence numbers. To find out which

4 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

acknowledgment acts as the acknowledgment for any particular byte, we can compute its
sequence number by adding the order number of the byte to the initial sequence number, and
then noting the first acknowledgment that has a higher sequence number.

The version of TCP used in this lab is an implementation of TCP-SACK. For more details, read
RFC 2018. However, for the purpose of doing the exercises, you should remember that
TCP-SACK uses the RFC 1323 tcp timestamp options in the header. It also uses other header
options to send sequence numbers for selective acknowledgments, but only when out of order
packets have been received by the receiver.

This means that the size of the TCP header is variable. The length of the variable part is at
minimum 3 four byte words (that is, a total of 12 bytes). This minimum occurs when no out of
order packets have been seen. Thus the TCP header length of any packet is at least 12 bytes
more than the normal TCP header size of 20. If the timestamp option is turned off (at a system
level) then these extra 12 bytes would not need to be used in the header, and the exactly MSS
bytes of user data would be transferred in each packet.

An earlier version of this document incorrectly stated that the variable header length is
due to the selective acknowledgment sequence numbers. We apologize for the mistake. If
you used that material to answer the question pertaining to the difference between the MSS and
the actual user data transferred, you will get full credit for that question.

It is difficult to trace a much longer connection than this by hand. In lab 2, we shall attempt to
capture traces of longer connections and more data transfer, and then use graphical methods to
extract aggregate information.

1.4.3 Timeout and Retransmission

Note that we ran tcpdump without the -S option, so that relative sequence numbers can be seen.
Only 10 bytes were to be sent before closing the connection, so that there was an attempt to
close the connection before the first timeout occurred. Therefore all the retransmissions attempt
to resend the same 10 bytes, but are also FIN packets.

1.5 User Datagram Protocol
In this exercise we see UDP datagrams being split into fragments by the underlying network.
The relevant information is in the part of the packet header dump which looks like:

(frag x:y@z+)

This means that the packet seen on the network is a fragment of the datagram with id x, and
contains y bytes of the datagram data at an offset of z. The + at the end, if present, indicates that
there are more fragments for this datagram, so we expect to see this flag on every fragment but
one (the last one in fragmentation order).

Note that the numbers reported all refer to user data, including the UDP header (which is user
data to IP). But each packet also has an IP header 20 bytes long, so a fragment of size y is really
an Ethernet packet of size y + 20. This value of this sum for the largest value of y is actually
the MTU of the Ethernet, which should be a familiar number.

UDP adds 8 bytes of header data to the amount of data we asked it to send, as expected. And as
we know, UDP is a connectionless protocol, so there is no connection setup/tearing down to be

5 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

observed.

Overview | Exercises for Lab 1

6 of 6 6/27/2001 10:31 PM

Discussion - first lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion1.htm

Exercises for First Lab Session
Click here for Overview | Click here for Discussion on Lab 1

1.1 Becoming Familiar with the Lab Setup
A single cluster consists of Four Intel-based PCs. These are connected to form the isolated
networks as shown in the following diagram.

1.1.1 The Machine H3

H3 has its own dedicated keyboard, mouse, and monitor. Log onto H3 using the group ID and
password your group has received. With the help of the labels on H3, determine:

1. name (e.g. shakespeare; read from label)
2. IP address(es) (read from label)
3. identity (e.g., H1, H2, H3, or R) (match IP address in above diagram)

Make a directory called results under your home directory on H3 machine in your cluster if
such a directory is not already there. Place the answers to the above questions (and all
remaining questions in section 1.1) in a file called conclusions.1.1 in the results
directory. We suggest that you open an editor now for this file and leave it open for the duration
of the exercise. To access the emacs editor, open an xterm window (click on Footprint, Utilities,
Color XTerm) and type:

emacs -fg black -bg AntiqueWhite -font 10x20 mylab1.txt &

1 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

1.1.2 The Three PCs (H1, H2 and R)

The three PCs share the other Keyboard/Mouse/Monitor set by way of a
Keyboard/Mouse/Monitor Sharing Switch (hereafter referred to as the Sharing Switch). Log
onto each of the 3 PCs and, for each, determine as above:

1. name (e.g., shakespeare; read from label)
2. IP address(es) (read from label)
3. identity (e.g., H1, H2, H3, or R) (match IP address in above diagram)

Convince yourself that the labels on the Sharing Switch match the machine labels by one of the
following procedures:

ON A LINUX MACHINE: Open an XTerm window (click on Footprint, Utilities, Color
XTerm) and then eject the CD-ROM by entering:

eject

Make sure that the CD-ROM tray ejects for the correct computer. Close the CD-ROM tray
by pressing it back in gently.

1.1.3 The Two Networks

All the machines in the cluster are in the subnet 10.Z.0.0. The four machines in the cluster are
then further organized into two physical networks, as seen in the above diagram. Machine R can
be viewed as a router that divides the 10.Z.0.0 subnet by using the third octet of the IP address
as a subnet address. In this manner, R could potentially reach 254 subnets; however, only two
networks are physically connected. These are viewed as two subnets.

Based on this representation of the networking topology, determine the following for each of the
two subnets in your cluster:

1. The subnet address.
2. The hosts on the network (for each host, indicate both the identity---H1, H2, H3, or

R---and the IP address).
3. The network part and subnet part of the IP address.
4. The subnet mask used by machines in that subnet.

You may want to write the machine name information you have obtained on a copy of the
diagram above for easy reference during the rest of the lab. If you use different clusters on
different visits to the lab for this lab session, perform exercise 1.1 once on each cluster.

(Click here for Discussion on this exercise)

1.2 ARP: Address Resolution Protocol
Place all answers to questions in this section in a file called conclusions.1.2 in your
results directory.

1.2.1 Filling the ARP cache

2 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

Log onto R. Open a XTerm window.
We wish to determine the IP-to-Physical Address mappings for H1 and H2 from R. Perhaps the
ARP cache at R contains these mappings. Examine the current ARP cache at R by entering the
command:

arp -a

Record the result in the file you opened earlier (conclusions.1.2).
1. The ARP cache at R is likely empty because entries in the table expire after a short

timeout. (If it is not empty, wait two minutes and re-examine the ARP cache. Repeat this
procedure until the ARP cache is empty.) Now ping H1 by entering:

ping <H1's IP addr>

Re-examine the ARP cache and record H1's physical (MAC) address. Now do the same
for H2: ping H2, examine the ARP cache, and record H2's physical (MAC) address.

2. Finally, examine the ARP cache to find which interface of R is connected to the Ethernet
that contains H1 and H2; record the IP address of that interface.

1.2.2 Using tcpdump to capture packets from ping

Now we will use the tcpdump program to observe the packet traffic that is generated by the
ping command. We will generate IP traffic on the 10.Z.2.0 subnet and capture packets at H3.
Open an XTerm window at H3 for the purpose of running tcpdump.

1. At R, check the ARP cache to make sure that it DOES NOT contain the IP-to-Physical
Address mapping for H3 (if it DOES, wait 5 minutes before proceeding).

2. At H3, start the tcpdump program by entering the command:

tcpdump -n

The -n option specifies that IP addresses will not be converted to names; hence the output
will show only IP addresses.

3. At R, ping H3; watch the XTerm window at H3 to see the packets as they are captured by
tcpdump. Once the packets have stopped arriving (approximately 5 seconds), press Ctl-C
to halt the tcpdump program. Record the output.

4. The first two lines of your tcpdump output should be similar to the following (if NOT,
wait 5 minutes then start over at part 1, section 1.2.2):

13:12:18.852792 arp who-has 10.4.2.10 tell 10.4.2.1
13:12:18.852962 arp reply 10.4.2.10 is-at 00:d0:bc:ed:23:64

3 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

<...time....> <..type..> <.....description.....>

Answer the following questions about the first 2 lines of YOUR tcpdump output:
1. What is the IP address of the host that broadcasts the ARP request?
2. Which IP address does the requesting host wish to resolve?
3. What is the IP address of the host that unicasts the ARP reply?
4. How many milliseconds after the ARP request is broadcast does the ARP reply

appear on the Ethernet? Compute the difference between timestamps.
5. The next 8 lines of your tcpdump output should be similar to the following pair of lines

(times 4):

18:08:20.918160 10.4.2.1 > 10.4.2.10: icmp: echo request
18:08:20.918396 10.4.2.10 > 10.4.2.1: icmp: echo reply

<..time..> <..source..> <..destination..> <...type...>

Answer the following questions about these 8 lines of YOUR tcpdump output:
1. How many milliseconds elapse between successive transmissions of ICMP echo

requests? Compute the average of your observations.

4 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

2. How many milliseconds after the ICMP echo request is transmitted does the ICMP
echo reply appear on the Ethernet? Compute the average of your observations.

Any additional lines of ARP traffic after these lines can be ignored.
6. Finally, examine the ARP cache at R and verify that the physical address listed for H3

matches the physical address given in the ARP reply of your tcpdump output. (If the ARP
cache at R does not contain the IP-to-Physical Address mapping for H3, the timeout has
expired. Simply ping H3 again to rediscover the mapping.)

(Click here for Discussion on this exercise)

1.3 Routing
In this exercise we verify that the routing table is correctly set up on each of the machines and
experiment with changing the routing table. Machine R acts as a router in that it forwards IP
packets according to its routing tables, whereas the other three machines are hosts. The subnet
mask on all machines in the cluster is 255.255.255.0. Any two addresses differing only in the
last octet will be assumed by each machine to be on the same physical network. In contrast, any
two addresses differing in a higher (more significant) position will be assumed to be on different
physical networks. Look at the diagram at the top of this page and convince yourself that this
subnetting scheme is consistent with the network.

1.3.1 Discovering Routing

We first use three different tools to study the routing tables set up in the network machines.
Questions follow at the end of the section.

Using netstat

Go to H1 and run:

netstat -rn

The -r option requests current routing information (netstat can provide other
information related to network status), and the -n option specifies that IP addresses should
not be converted to names.
Do the same for H2 and H3.

Put the output in files called H1_netstat.1.3.1, H2_netstat.1.3.1,

H3_netstat.1.3.1 in your results directory.
Go to R and from a command line (Xterm window) run:

5 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

netstat -rn

Do not put the output in any file. Simply use the output to answer some of the questions
below.

Using traceroute

Go to H1 and successively run the commands:

traceroute <IP address of H2>
traceroute <IP address of H3>
traceroute <IP address of R>

For R, choose the IP address that is in the same subnet as H1.
Do the same for H2 and H3, from each machine tracing the route to the other three
machines. Each time, choose the IP address for R that is in the same subnet as the
machine running traceroute.

Put the output in files called H1_traceroute.1.3.1, H2_traceroute.1.3.1,

H3_traceroute.1.3.1 in your results directory. Each file should contain the output
from all traceroute commands that were run on that machine. Since some of the output
is produced on machines other than H3, transfer these files to H3 using ftp, as described
in the overview.

Using ping

Go to H1 and successively run the commands:

ping -n -c 1 -R <IP address of H2>
ping -n -c 1 -R <IP address of H3>

The -R option sets the "Record Route" option on the ICMP packet, so that we receive a
list of the IP addresses of network interfaces that the ICMP_ECHOREQUEST and
ICMP_ECHO go through. The -n option is once again to specify IP addresses only, and
the -c option specifies a single ping, or ICMP_ECHOREQUEST.

Put the output in files called ping.1.3.1 in your results directory.

By looking at the netstat, traceroute, and ping outputs you have gathered, answer the
following questions. Put the answers in a file called conclusions.1.3.1 in your results
directory. When asked to describe a route, do not merely quote the output of netstat; instead,
report it in English, such as: "There is a route on this machine for packets destined for the
network 10.4.0.0, and the next-hop router (gateway) is specified as 10.4.4.4".

6 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

1. Look at the routing table of H1 as reported by netstat. What is the default gateway
(router) for H1?

2. Are there any routes in the routing table on H1 which
1. Do not have H1 itself as the destination, and
2. Are not default routes?

If so, describe these routes.
3. Look at the routing table of R as reported by netstat. What is the default gateway

(router) for R?
4. Are there any routes in the routing table on R which

1. Do not have R itself as the destination, and
2. Are not default routes?

If so, describe these routes.
5. Look at the routing table of H1 and R as reported by netstat. What would be the route

taken by a packet traveling from H1 to H2?
6. What would be the route taken by a packet traveling from H1 to H3?
7. Look at the output of the traceroute you ran from H1 to H2 and H3. Is that output in

agreement with your two answers above? If not, what is the difference?
8. Look at the output of the ping you ran from H1 to H2 and H3. Is that output in agreement

with your two answers above? If not, what is the difference?

1.3.2 Host Specific Routes

In this exercise we add a host specific route to the routing table of H1. Although this action will
not be an improvement over the default routing that already exists, it will demonstrate how host
specific routes can be used to augment a more general routing table.

Go to H1 and run:

route_H2_through_R

This command causes a route to be added in the routing table of H1 stating that traffic to
H2 should be forwarded to R. In particular, this command is equivalent to:

route add -host <IP address of H2> gw <IP address of R>

We use the customized command since route can only be used by the root user on all
systems.
On H1, run:

netstat -rn

Compare the result with the netstat output obtained in exercise 1.3.1, saved in the file
H1_netstat.1.3.1.

Put the output in a file called netstat.1.3.2 in your results directory.
On H1, run the command:

traceroute <IP address of H2>

Compare the result with the traceroute output obtained in exercise 1.3.1, saved in the
file H1_traceroute.1.3.1.

Put the output in a file called traceroute.1.3.2 in your results directory.

7 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

Run the command:

clear_H2_route

This command deletes the route we added above. In particular, it is equivalent to:

route del <IP address of H2>

You may run netstat -rn again to check that the route has been removed from the
routing table. You do not need to save the result.

By looking at the netstat and traceroute outputs, answer the following questions. Put the
answers in a file called conclusions.1.3.2 in your results directory.

1. Look at the output of netstat and traceroute. Are they consistent with each other? If
not, what is the difference?

2. The route to H2 now appears to consist of two hops instead of only one as before.
However, earlier we did not have a specific route for H2, and the default router was (and
still is) the route we specifically added for H2. How was traffic being routed to H2, so that
it took less hops?

1.3.3 Defective Routes

In this exercise we attempt to demonstrate that it is easy to add routes that are defective and
cause the network to stop functioning. We will add a host specific route to the routing table of
H1, as before.

Go to H1 and run the command:

route_H3_through_H2

Now a route has been added to the routing table of H1 which routes traffic destined for H3
through H2. In particular, this command is the equivalent of running:

route add -host <IP address of H3> gw <IP address of H2>

On H1, run:

netstat -rn

Compare the result with the netstat output you obtained in exercise 1.3.1, saved in the
file H1_netstat.1.3.1.

Put the output in a file called netstat.1.3.3 in your results directory.
On H1, run the command:

traceroute <IP address of H3>

If the command does not terminate in about 10 seconds, kill it with a Ctl-C. Compare the
result with the traceroute output obtained in exercise 1.3.1, saved in the file
H1_traceroute.1.3.1.

Put the output in a file called traceroute.1.3.3 in your results directory.
Run:

8 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

clear_H3_route

This command deletes the route we added above. In particular, it is equivalent to running:

route del <IP address of H3>

By looking at the netstat and traceroute outputs, answer the following questions. Put the
answers to the following questions in a file called conclusions.1.3.3 in your results
directory.

1. Were you able to trace the route from H1 to H3? If not, then no route can be established
from H1 to H3 and H3 is said to be unreachable from H1.

2. If H3 was not reachable, explain why not. Note that we only added a route to the routing
table; we did not delete any routes. All the routes that were in the routing table for
exercise 1.3.3 (including the default through R) remained unchanged. Your answer should
explain why H3 is not reachable using that route (the default through R), as well as why it
is not reachable using the new route.

(Click here for Discussion on this exercise)

1.4 The Transmission Control Protocol (TCP)
The Transmission Control Protocol (TCP) implements guaranteed and reliable delivery over the
best-effort Internet Protocol (IP) services. The rest of the exercises in this lab as well as the next
lab will focus on TCP.

1.4.1 TCP Synchronization (handshake)

In this exercise we observe the TCP three-way handshake in detail. In the following, tcpdump
produces a considerable amount of information on each line (packet header dump). If you are
running tcpdump from an xterm, you should size it so that it gives you a large number of
columns to avoid line wrap. If you are running from a VT, then you probably will not encounter
line wrap and there is no way to avoid it if you do.

First go to H3 and run:

tcpdump -n -S

By default tcpdump attempts to (after the three-way handshake is seen) convert sequence
numbers to a base of zero, which makes it easy to follow the progress of the connection.
We shall use this feature in later exercises, but here we need to observe the sequence
numbers in detail, so we use the -S option to turn this feature off.

In this and later exercises, you may see some ARP packets being observed by tcpdump.
You should ignore these lines.

Put the output in a file called tcpdump.1.4.1 in your results directory.
Then go to H1 and run:

oursock -tcp

This command runs the oursock utility using TCP. Specifically, the -tcp option specifies
that a connection-oriented or TCP socket is to be opened to H3. Since the command does

9 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

not specify a number of bytes to transfer, the default number of bytes (zero) will be
transferred.

Your output on H1 should be similar to the following:

Checkpoint 1
Checkpoint 2
Checkpoint 3
Checkpoint 4
Checkpoint 5
Checkpoint 6
Checkpoint 7
Checkpoint 8

These are internal checkpoints that the utility runs through. (Click here for Discussion)
Now go to H3, terminate the tcpdump process, and observe the output. There should be a
total of seven lines of output; the first three lines represent the TCP three-way handshake
which sets up the connection, while the remaining lines correspond to the termination of
the connection. A SYN packet in the tcpdump output can be recognized by an S on the
line. Immediately following is the initial sequence number, the same number follows once
more after a colon (:).

By looking at the tcpdump output, answer the following questions. Put the answers to the
following questions in a file called conclusions.1.4.1 in your results directory.

1. Which port number does the oursock utility use on H1?
2. To which port number does it connect (i.e., the discard service)?
3. What is the initial sequence number chosen by oursock?
4. What is the initial sequence number chosen by the discard service?
5. What are the Maximum Segment Sizes advertised by each end of the connection?
6. Consider the FIN packets which terminate the connection. What is the arithmetic

difference between the final acknowledgement sequence number sent by discard in the
FIN packet and the initial sequence number sent by oursock in the SYN packet? Why?

(Click here for Discussion on this exercise)

1.4.2 Sequence Numbers

In this exercise we observe the growth of sequence numbers in detail.

First go to H3 and run:

tcpdump -n -S

Put the output in a file called tcpdump.1.4.2 in your results directory.
Then go to H1 and run:

oursock -tcp -b 15000

This runs the oursock utility using TCP as before, specifying this time that 15000 bytes
of user data are to be transmitted using the TCP connection before it is terminated.
Now go to H3 and terminate the tcpdump process and observe the output. As before, you
will see the TCP synchronization at the beginning and the connection termination at the
end. The lines in between show the data transfer packets. On each line for such a packet
sent from H1 to H3, after the P indicating data transfer, there are two numbers separated

10 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

by a colon (:). These are the sequence numbers of the earliest byte and one more than the
latest byte in that packet. On each line for an acknowledgement, there is a single number
after the ack which denotes the acknowledgement sequence number. This is the next byte
that the receiver expect to receive.

By looking at the tcpdump output, answer the following questions.Put the answers to the
following questions in a file called conclusions.1.4.2 in your results directory.

1. What is the initial sequence number chosen by oursock?
2. What is the initial sequence number chosen by the discard service?
3. What was the time at H3 at which the acknowledgement for the 5000-th byte of user data

was sent out?
4. How much data is sent in each packet by oursock while it has more data to send?
5. By how much does this number differ from the MSS advertised? Why?
6. Is there a packet which is both a FIN packet and also carries data? If so, explain how this

is accomplished by the TCP protocol.
7. If there is such a packet, how many bytes of user data are carried in it?
8. If there are no retransmissions, the send sequence numbers should only go up, never down

(ignoring the rare wrap-around). Trace the successive sequence numbers only on the
packets sent from H1 to discover whether retransmission occurred or not. List the ending
sequence numbers on data packets sent, and state how many retransmissions occurred
together with the times they occurred.

(Click here for Discussion on this exercise)

1.4.3 Timeout and Retransmission

In this exercise we examine some details of the TCP timeout and retransmission mechanism.
Such an experiment takes a significant amount of time and requires network management
privileges to simulate failure. Therefore we have performed the experiment for you and have
provided you with the resulting tcpdump output. The following output is from tcpdump running
on machine X. After Machine X established a connection to Machine Y, the network between
the endpoints of the connection went down.

01:21:29.142113 10.4.2.10.1117 > 10.4.1.20.9: S 1383812820:1383812820(0) win 32120
01:21:29.142717 10.4.1.20.9 > 10.4.2.10.1117: S 3785554645:3785554645(0) ack 1383812
01:21:29.142963 10.4.2.10.1117 > 10.4.1.20.9: . ack 1 win 32120 (DF)
01:21:39.165965 10.4.2.10.1117 > 10.4.1.20.9: P 1:11(10) ack 1 win 32120 (DF)
01:21:39.167876 10.4.2.10.1117 > 10.4.1.20.9: F 11:11(0) ack 1 win 32120 (DF)
01:21:42.162402 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:21:48.162362 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:22:00.162372 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:22:24.162372 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:23:12.162388 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:24:48.162387 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:26:48.162371 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:28:48.162387 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:30:48.162370 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:32:48.162390 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:34:48.162388 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:36:48.162388 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:38:48.162391 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:40:48.162388 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:42:48.162390 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)
01:44:48.162387 10.4.2.10.1117 > 10.4.1.20.9: FP 1:11(10) ack 1 win 32120 (DF)

By looking at the above tcpdump output, answer the following questions. Put the answers to

11 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

the following questions in a file called conclusions.1.4.3 in your results directory.

1. How many retransmissions were tried in all before the connection was finally terminated?
2. How much time elapsed between the original transmission of the packet and the first

retransmission?
3. How much time elapsed after the network went down until the connection was terminated

(that is the last retransmission was attempted)?

(Click here for Discussion on this exercise)

1.5 User Datagram Protocol
Though Labs 1 and 2 concentrate on TCP connection-oriented service, we will use UDP for
comparison purposes in Lab 2. Therefore, this exercise provides a preview of UDP traffic in a
tcpdump output. In particular, this exercise demonstrates how fragmentation works on UDP
packets.

First go to H3 and run:

tcpdump -n

Note that we have removed the -S option since this has no significance for UDP traffic.

Put the output in a file called tcpdump.1.5 in your results directory.
Then go to H1 and run:

oursock -udp -b 20000 -p 5000

This command runs the oursock utility using UDP and specifies that 20000 bytes of user
data are to be sent in datagrams, each of which can contain a maximum of 5000 bytes of
user data. We therefore expect that the UDP protocol will attempt to send four datagrams,
each 5000 bytes long.
Now go to H3 and terminate the tcpdump process and observe the output. There should be
four sets of packet dumps, each representing one of the datagrams that UDP attempted to
send. The lines in each set represent fragments that were created by the underlying
protocol (here, Ethernet). The last part of each line contains the datagram ID of the
fragment and the fragment offset information, specifically, the number after the frag
denotes the amount of data in this fragment and the number following the @ after that
denotes the fragment offset. Finally, one line of each set indicates the total amount of data
in the packet, located immediately after the udp indicating UDP traffic.

By looking at the tcpdump output, answer the following questions. Put the answers to the
following questions in a file called conclusions.1.5 in your results directory. Except for
the first question, all questions refer to the first datagram of the four; the answers would be the
same for each datagram.

1. What are the datagram IDs of the four datagrams that UDP attempted to send?
2. Into how many fragments was the datagram fragmented?
3. Look at the fragment of the datagram which has offset zero. What is the port number

oursock used on H1?
4. How many bytes of user data was the Ethernet able to accommodate in a single fragment?
5. Is this number the same as the MSS used by the TCP connection in exercise 1.4.2 ? If not,

12 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

why is it different?
6. One fragment should be smaller than all the others. What was the order of fragmentation

of this smallest fragment (1,2,3,4) ? Here we are concentrating on the fragmentation
order, as given by the fragment offset from the beginning, rather than the transmission
order.

7. If the bytes in a datagram are numbered from 0 to 4999, in which fragment was byte 1999
of a datagram sent?

(Click here for Discussion on this exercise)

Deliverables for Lab session 1
1.1 - all answers in conclusions.1.1
1.2 - all answers in conclusions.1.2
1.3.1 - netstat outputs in H1_netstat.1.3.1, H2_netstat.1.3.1,

H3_netstat.1.3.1, traceroute outputs in H1_traceroute.1.3.1,
H2_traceroute.1.3.1, H3_traceroute.1.3.1, ping output in ping.1.3.1, answers
to questions in conclusions.1.3.1
1.3.2 - netstat output in netstat.1.3.2, traceroute output in traceroute.1.3.2,
answers to questions in conclusions.1.3.2
1.3.3 - netstat output in netstat.1.3.3, traceroute output in traceroute.1.3.3,
answers to questions in conclusions.1.3.3
1.4.1 - tcpdump output in tcpdump.1.4.1, answers to questions in conclusions.1.4.1
1.4.2 - tcpdump output in tcpdump.1.4.2, answers to questions in conclusions.1.4.2
1.4.3 - Answers to questions in conclusions.1.4.3
1.5 - tcpdump output in tcpdump.1.5, answers to questions in conclusions.1.5

Click here for Overview | Click here for Discussion on Lab 1

13 of 13 6/27/2001 10:29 PM

First lab session for CSC/ECE 573 file:///C|/Vouk/573/lab1.htm

Discussion of Exercises for Second Lab
Session

Click here for Overview | Click here for Exercises for Lab 2

2.1 Slow-start and Congestion Avoidance
The performance enhancement measures of TCP are sometimes subtle and not trivial to
appreciate. This is because all the performance measures are designed to be in the details of
TCP's operation (that is, operate with temporal locality), and yet produce effects that determine
the long-term behavior of TCP. In this exercise we see the effects of such measures when
nothing untoward happens. Since retransmissions are costly, TCP attempts to send data utilizing
the smallest chunks possible, and speed up this rate exponentially. This allows TCP to quickly
get to the point of transmitting data at a high rate, but not lose packets at the beginning of the
connection due to overestimation of the bandwidth available. In effect, the bandwidth is
estimated dynamically, and the initial estimate is very small.

Rather than continue this dynamic increase until packet losses are observed, TCP avoids
congestion and loss by estimating the round trip time and using the sliding window sizes. This is
why the transmission rate stabilizes to a constant value (approximately) after some time. Details
on this behavior can be found in your text or any reference material.

How well does this mechanism work? We can see that there are very few or no losses in the
network between the TCP connection endpoints. Let us focus on the average throughput
obtained by the TCP connection. Remember that the throughput we can calculate from the plot
is in bytes/second. After we convert, it should be pretty close to about 8 Mbits/second, which is
about the maximum we expect to get out of the 10 Mbits/sec bandwidth of the ethernet which is
the limiting factor on the bandwidth. This tells us that TCP did a good job of utilizing the
bandwidth without suffering losses.

2.2 Bandwidth Sharing for Multiple Connections
When two connections, similar to each other and to the above case we just considered, operate
simultaneously, they effectively share the bandwidth available in the ethernet. Since both use
exactly the same mechanism for estimating bandwidth, it is no surprise that both end up with the
same value for bandwidth. This means that both connections will receive the same fraction of
the total bandwidth utilized, which has to be 50% (to a high degree of accuracy). Thus the
connections "share" bandwidth, and do so in a fair manner. An interesting point to note is that
each TCP connection operates independently, without any feedback from the other. Thus for an
individual TCP connection, the problem remains to determine what bandwidth it should utilize,
in the presence of whatever other network traffic needs the same physical resources. But at a
global level, this ends up being a fair sharing mechanism if all other traffic on the network also
follows the same policy. This is why TCP is a "nice" protocol.

A more simple-minded protocol that does not make a similar effort to estimate bandwidth and
does not possess the detail performance measures that lead to bandwidth sharing cannot have
this "nice"characteristic. This is demonstrated in the second part of this exercise, where the
second connection using the same network is a UDP connection. As we can see, the TCP

1 of 2 6/27/2001 10:32 PM

Discussion - second lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion2.htm

connection continues to try and estimate the bandwidth available, but the UDP connection just
blasts the data it needs to send, and thus grabs the lion's share of the bandwidth. All the
estimation and "niceness" costs a lot of design and implementation complexity.

You may notice that oursock skips the checkpoint numbered 6 when you run it in the endless
mode. This is because in the endless mode there is no distinction between full packets and
leftover packets. Checkpoint 7 now stands for "transmitted all data", and checkpoint 8 denotes
the socket close as before. These actions are still performed when the endless send is terminated
with a Ctl-C .

2.3 Congestion Control
The forwarding utility uses the sysctl interface to the networking functions on R to turn
routing on and off. It utilizes the nanosleep function to implement the delays between turning
routing off and on, and the delays between successive turn-off-on sequences. The amount of
sleep time can be specified with a precision of nanoseconds, but of course depending on the
system capabilities the accuracy of the sleep time is far less. The manual page for nanosleep
states that any sleep time less than 2 ms will be performed with a busy wait and therefore will
have a high accuracy.

The forwarding utility has been programmed to perform two kinds of pauses, each with a
random duration. The length of the short pauses are centered on 1 ms with a maximum variation
of 400 microseconds either way. The long pauses are centered on 1 second, with a maximum
variation of 50 ms either way. Each pause is randomly chosen to be a long or a short pause, with
the bias heavily towards a long pause at the beginning but quickly shifting to shorter pauses for
subsequent pauses. The intervals between pauses are also random variables.

If forwarding received an error from the system attempting to sleep, it responds with a message
which begins with:

ERROR attempting to suspend for precise time:

You should abort the exercise and start the exercise from the beginning if you see this message.

It may be difficult to see the slow-start behavior after each loss because of the scale of the plot.
You can try to find the corresponding line in the tcpdump output, then create a small file by
extracting that line together with about 30 lines before and about 50 lines after it, in order. Then
you can run extract_plot_data with the small file you have produced, and then
plot_all_traffic. This will only plot the events near the retransmission, and you will be able
to observe the details of the plot.

To find the corresponding line in the tcpdump output, you should first go to the
allevents.list file, and search for the time index provided by the awk script using the search
facility of the editor you are using. Once you locate that line, note its line number. Then edit
tcpdump_output.2.3 and go to the same line number. Since the lines of allevents.list
correspond to the lines of tcpdump_output.2.3 very closely (only SYN, RST and pure FIN
lines are eliminated), you should be able to find the line you need by inspection around this line.
This is a slightly tedious process, and you are not required to do it. But it provides a better
picture of the retransmission characteristics.

Click here for Overview | Click here for Exercises for Lab 2

2 of 2 6/27/2001 10:32 PM

Discussion - second lab session for CSC/ECE 573 file:///C|/Vouk/573/discussion2.htm

Exercises for Second Lab Session
Click here for Overview | Click here for Discussion on Lab 2

General Remarks on Lab 2
In this second lab session, we shall concentrate on details of the TCP data transfer mechanism.
In 2.1, we attempt to see the slow-start and congestion avoidance behavior of TCP under
nominal conditions. In 2.2, we try to observe the bandwidth sharing properties of TCP --- the
so-called "nice" behavior by which TCP attempts to utilize only a fair share of bandwidth in the
presence of multiple connections over a network. We then contrast this behavior with the
performance of a more simple-minded protocol, UDP. Finally in 2.3, we examine the TCP
congestion control mechanism in the presence of network congestion and loss.

During these exercises, you may be asked to perform one or more steps and observe the result,
but not save the output. Though there are no deliverables for these tasks, we strongly suggest
you complete them, since they will facilitate your understanding of the material.

It is not essential to choose the same cluster for lab 2 as you did for lab 1. As before, inform Dr.
Martin or the grading TA of the cluster you worked on. Each cluster is set up as it was during
lab 1. Use the same userid and password as for exercise 1.

For the experiments in this lab session, we want to see packets on the physical network
containing R, H1 and H2. All results must be left in your results directory on H3. H3 still
performs the function of running the discard service to sink data transmitted by H1 and H2.

The tcpdump output in these experiments will be much larger than for lab 1 experiments. We
shall use scripts that parse the output and extract aggregate data. The scripts require that the
output be in the exact format generated by tcpdump. For this reason, you should run tcpdump
exactly as specified in the exercises, redirecting the output directly to a file. If you attempt to
view the output on the screen and then save it to a file using cut-and-paste or some other
method, you may lose a lot of the data or make the output impossible to parse.

We shall use the graphical application gnuplot to view aggregate characteristics of bulk data in
these experiments. We provide scripts that use gnuplot to produce plots on the screen. You do
not need to run gnuplot yourself, though you can do so if you are familiar with its interactive
command language. The scripts produce GIF files as well as on-screen plots; to answer some
questions about the data transfer, use the GQview image viewer to view those images in detail.
There is no need to save or submit any of the plots. The GIF files produced are quite large, so
GQview may take a significant amount of time (30 seconds or more) to display each file.

The GIF files that you produce, as well as other temporary files such as tcpdump output, take up
a great deal of disk space. At the end of these exercises, there is a list of temporary files you are
likely to have produced, and you should make sure to delete them. As in Lab 1, all the
deliverable files should be saved in your results directory on H3.

2.1 Slow-start and Congestion Avoidance
In this exercise we observe the slow-start mechanism of TCP, in which the data transfer rate

1 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

begins at a small value, grows exponentially, and finally levels off to avoid congestion.

First go to H1 and run:

tcpdump -n -tt -s 54 > tcpdump_output.2.1

Note that we are no longer using the -S option because we want the convenience of
having sequence numbers represent bytes, which is effectively what happens since
tcpdump converts sequence numbers to a base of zero for each connection. In the rest of
this lab, we shall mean "zero based sequence numbers", or effectively "bytes transferred
on the TCP connection" when we refer to sequence numbers. We have also added the new
options -tt, which asks for a timestamp in seconds rather than hours, minutes and
seconds, and -s, which specifies the number of bytes to capture from each packet header.
54 bytes are enough for our purposes, and reducing the number of bytes captured (from
the default of 68) reduces the chance of tcpdump dropping packets.
From another xterm or VT session on H1, run:

oursock -tcp -b 500000

After this command ends, terminate the tcpdump you started using a Ctl-C.
From the same directory you were in while running tcpdump, run:

extract_plot_data tcpdump_output.2.1

This command runs several awk scripts on the tcpdump output, and creates five files. The
tcpdump output must be found in the current directory, and the files which are created are
placed in the same directory. Of these, the main one is called allevents.list --- this
contains almost the same information as the tcpdump output itself, but better formatted
for subsequent scripts. You can view this file; there are at most five fields separated by a
single space on each line, the first is time in seconds from the time when the first TCP
handshake was seen to be completed, the next two are source and destination IP address
with ports, the rest are protocol specific information for TCP send, TCP ack and UDP
packets in the same format as tcpdump output.

The rest of the files each contain data in two columns. The first column of each contains
time in seconds from the same zero base. The second column contains data to be plotted
against time. The data in this column for the different files are:

1. H1_send.dat - Send sequence numbers for the connection from H1 to H3.
2. H1_ack.dat - Acknowledgment sequence numbers for the connection from H1 to

H3.
3. H2_send.dat - Send sequence numbers for the connection from H1 to H3, or

cumulative number of bytes, if the data transfer used UDP.
4. H2_ack.dat - Acknowledgment sequence numbers for the connection from H2 to

H3.
The files for H2 are empty if no data packets were flowing from H2 to H3, as in this
experiment. The acknowledgment file for H2 is empty if data packets are flowing from
H2 to H3, but using the UDP protocol. Any files by the above names already existing in
the current directory are deleted, whether new files are produced or not.

When running this command, you may see one or more messages of the form:

sequence number reversal at time index 3.616185

This message indicates that the awk script has detected what is probably a TCP

2 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

retransmission. It is not very likely that you will see this message before we get to
exercise 2.3. In that exercise, we shall utilize this information to look into the details of
the retransmissions. In all the other exercises, you should ignore this message if you see it.

Open each of the above mentioned files in your current directory and examine the first
few lines in each file and compare them. Convince yourself that you see data packets
where they may be expected from the above description, and that they are consistent.

Put the allevents.list file as a file called allevents.list.2.1 in your results
directory.
From the same directory, run:

plot_all_traffic

This command runs gnuplot on all the data files produced above. The result is displayed
on the screen as well as saved to a GIF file. The plots produced consist of lines joining the
points obtained by plotting the sequence numbers against time. To obtain a plot in which
the actual data points are highlighted as well as joined by line segments, run
plot_all_traffic -points . This is useful only for data sets containing comparatively
few points, such as this exercise. For the much larger number of points obtained in later
exercises, this option is not useful because the points cannot be rendered separately.

For each plot actually displayed on the screen, a GIF file is also produced. You can view
the GIF files using the GQview application. To access this image-viewing application,
click on Footprint, Graphics, GQview. Once you open the GIF file, you can expand the
window or choose the full screen display mode from the menubar. To return from the full
screen display, press the Esc key. You can choose to zoom in to observe some specific
area of the plot. Clicking and dragging the image area allows you to move about and
examine different areas of the plot.

For this exercise, we recommend using GQview to examine the plot in detail.

A maximum of three plots are drawn (and three GIF files are produced) from one run of
plot_all_traffic. These are:

1. H1_sendack.gif - Send and acknowledgment sequence numbers for the
connection from H1 to H3.

2. H2_sendack.gif OR H2_send.gif - Send and acknowledgment sequence numbers
for the connection from H2 to H3, or the cumulative bytes transferred if the
connection is UDP.

3. H1&H2_send.gif - Send sequence numbers for the connection from H1 to H3, and
either the send sequence numbers or cumulative bytes transferred (if the transfer
used UDP) for the connection from H2 to H3.

In all the plots, bytes of transferred data are plotted against time in seconds. Only plots for
which the corresponding data are available are produced. Any files by the above names
already existing in the current directory are deleted, whether new files are produced or not.
In this exercise, you should see just one plot, for the send and acknowledgment sequence
numbers for the TCP connection from H1 to H3.

By looking at the allevents.list file produced, or the plot, or both, answer the following
questions. Put the answers to the following questions in a file called conclusions.2.1 in
your results directory.

3 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

1. We specified that 500000 bytes of data be transferred using the TCP connection. Verify
from the plot how many bytes were actually transferred.

2. From the plot, what is the approximate time it took to transfer the above amount of data?
3. Verify the above two numbers from the allevents.list file.
4. From the above two numbers, what is the average rate of data transfer of the TCP

connection? This should also be the average slope of the plot for sending sequence
numbers.

5. At a large scale, ignoring local variations, what is the behavior of the plot for bytes
transferred? For example, is it a straight line, or is it growing or decaying, or what?

6. What does this say about the long term characteristics of the TCP connection?
7. What is the nature of the plot for the acknowledgment sequence numbers in relation to the

sending plot (above, below, parallel, converging, diverging, ...) ?
8. For this and the rest of the questions in this exercise, you need to view details of the plot

using GQview. If you have not already done so, you probably also want to regenerate the
plot with points by running the plot_all_traffic command again with the -points
option.
The vertical difference between the two plots is the amount of outstanding data which the
sending side has transmitted but which has not yet been acknowledged by the receiving
side. This should correspond to the receiver window size.
Estimate the average vertical difference between the two plots, expressed in bytes.

9. View the tcpdump_output.2.1 file. What is the receiving window size advertised in the
return SYN packet? Is your answer to the previous question close to this window size?

10. Focus on the first few data points in the graph. You should see bursts of packets sent by
the sending TCP. In this context a burst refers to a number of packets sent almost at the
same time, or back-to-back. The burst size starts at a small value, like 1 or 2, and for some
time predominantly increases. Then the burst size stabilizes at a large value, though it will
experience small fluctuations throughout the life of the connection.
At what value, approximately, does the burst size stabilize?

11. When the burst size stabilizes, TCP switches from slow-start to congestion avoidance
mode. How many seconds into the life of the connection does this happen?

12. During this period of slow-start, what is the behavior of the plot for acknowledgment
sequence numbers with respect to the sending sequence number plot?

(Click here for Discussion on this exercise)

2.2 Bandwidth Sharing for Multiple Connections
In this exercise we observe bandwidth sharing between two connections. First we study the case
where both connections use TCP, then the case where one uses TCP and the other UDP.

2.2.1 TCP Connections Only

First go to H1 and run:

tcpdump -n -tt -s 54 > tcpdump_output.2.2.1

From another xterm or VT session on H1, run:

oursock -tcp -e

In this exercise we use the -e option of oursock which sends an endless stream of data,
instead of a specific number of bytes as we have been sending so far.

4 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

Go to H2 and run:

oursock -tcp -b 10000000 -d 5

The -d option specifies a wait of 5 seconds after the connection is established and before
data transmission begins. Thus this command asks oursock to establish a TCP connection
to H3, wait 5 seconds, send ten million bytes of data, and then close the socket and end.

After this command ends, go to H1. Wait approximately 5 seconds. (As little as 2 seconds
is probably enough to obtain a good plot, but much longer than 7 seconds is going to
make the plot less readable.) First terminate the oursock sending the endless stream, and
then terminate the tcpdump you started, using Ctl-C for each termination.
From the same directory from which you ran tcpdump, run:

extract_plot_data tcpdump_output.2.2.1

This command will run the awk scripts we mentioned before. This time we should see
data in all four .dat files, since H1 and H2 each had a TCP connection to H3.

Open each .dat file and verify that it contains data.
From the same directory, run:

plot_all_traffic

This time you should see three plots on the screen. The corresponding GIF files are also
produced, though they are not needed since we are not interested in details for this
exercise.

By looking at the allevents.list file produced, or the plots, or both, answer the following
questions. Put the answers to the following questions in a file called conclusions.2.2.1 in
your results directory.

All questions for this exercise as well as exercise 2.2.2 refer to the large scale characteristics of
the plot obtained. For the purpose of these exercises, we divide the plot into three regions: (A)
the period from the beginning of the plot until the second connection starts up, (B) the period
when two connections operate simultaneously and (C) the period after the second connection
ends until the end of the plot. We ask only for approximate answers which you can read off the
plot.

1. How many bytes of data does the single TCP connection transfer in region A?
2. What is the data transfer rate for the single connection in region A?
3. How many bytes of data does the first TCP connection transfer in region B?
4. What is the data transfer rate for the first connection in region B?
5. How many bytes of data does the second TCP connection transfer in region B?
6. What is the data transfer rate for the second connection in region B?
7. How many bytes of data does the first TCP connection transfer in region C?
8. What is the data transfer rate for the first connection in region C?
9. What is the total data transfer rate of the two TCP connections in region B?

10. Is this rate less than, equal to or more than the data transfer rate of the first connection
only in region C?

11. What would you say is the reason for the answer to the above question?
12. What is the percentage of total bandwidth utilization that the first TCP connection

received during region B?

5 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

2.2.2 TCP and UDP

First go to H1 and run:

tcpdump -n -tt -s 54 > tcpdump_output.2.2.2

From another xterm or VT session on H1, run:

oursock -tcp -e

Go to H2 and run:

oursock -udp -b 10000000 -p 1000 -d 5

This time we use UDP to transfer the ten million bytes of data, and also specify that they
should be sent in UDP packets each containing 1000 bytes of user data.

After this command ends, go to H1. Wait approximately 5 seconds. First terminate the
oursock sending the endless stream, and then terminate the tcpdump you started.
From the same directory from which you ran tcpdump, run:

extract_plot_data tcpdump_output.2.2.2

This time we should see data in both the send and acknowledgment files for H1, since H1
had a TCP connection to H3, but only in the send and not the acknowledgment file for H2,
since UDP does not use acknowledgments.

Open each .dat file and verify that the above is true.
From the same directory, run:

plot_all_traffic

You should again see three plots on the screen. This time the plot for H2 shows only
cumulative bytes sent, since there are no acknowledgments to plot. Once again, we are not
interested in details for this exercise.

By looking at the allevents.list file produced, or the plots, or both, answer the following
questions. Put the answers to the following questions in a file called conclusions.2.2.1 in
your results directory.

1. How many bytes of data does the single TCP connection transfer in region A?
2. What is the data transfer rate for the single connection in region A?
3. How many bytes of data does the TCP connection transfer in region B?
4. What is the data transfer rate for the TCP connection in region B?
5. How many bytes of data does the UDP connection transfer in region B?
6. What is the data transfer rate for the UDP connection in region B?
7. How many bytes of data does the TCP connection transfer in region C?
8. What is the data transfer rate for the TCP connection in region C?
9. What is the total data transfer rate of the two connections in region B?

10. What is the percentage of total bandwidth utilization that the TCP connection received in
region B?

(Click here for Discussion on this exercise)

6 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

2.3 Congestion Control
In this exercise we observe how TCP deals with lost packets, in the presence of network
congestion. To simulate network congestion, we shall cause some packets to be dropped at the
router R by simply refusing to forward them. This loss is detected by the sending TCP when the
acknowledgments for lost packets do not come back; TCP then retransmits these packets.

It is difficult to observe this behavior in a small network with no background traffic and no real
chance of loss, either in the medium or in a buffer at an intermediate router. It is also unlikely
that we shall be able to observe the loss of a single packet (which would allow us to see
SACK-specific behavior); to see such a loss, we would need to observe packets at the kernel
level and make decisions to drop or route them based on the experiment we wish to perform.
Since our mechanism for dropping packets is simply to turn packet forwarding on and off, it is
likely that we shall always see multiple packet losses. Accordingly, we expect to see TCP going
back to slow start every time a loss occurs.

Preparatory Step: In this step we become familiar with the forwarding utility, which
serves as our means of turning forwarding on and off at R. This is a utility developed
specifically for this lab. Normally there would not be a similar utility on a UNIX system,
and no user except the superuser would have the privilege of turning routing on and off.

1. Go to H1 and run:

ping <IP address of H3>

This will start an endless series of ping's from H1 to H3, so you should see output
consisting of multiple lines that are each of the form:

64 bytes from 10.4.1.10: icmp_seq=2 ttl=255 time=0.5 ms

You should see one new message every second, and the ICMP sequence number
should go up by one each time. Leave this process running.

2. Go to R and run:

forwarding -off

This uses the forwarding utility to simply turn all IP packet forwarding off at R.
You should see the following message, indicating that IP packets are no longer
being forwarded:

net.ipv4.ip_forward = 0

3. Go to H1, and observe the ping process. You will see that the process has stopped
providing any output. Convince yourself that this is the case (you should wait
several seconds).

4. Go back to R and turn routing back on with the command:

forwarding -on

You should again see a message, this time indicating that packet forwarding has
been turned on.

5. Go to H1, and observe that the ping process has again started providing output.
There should be a discontinuity in the ICMP sequence numbers when the output
restarts. The missing numbers correspond to ICMP_ECHOREQUEST packets

7 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

which were sent from H1 but never reached H3 because they were not forwarded at
R. Naturally, there were no ICMP_ECHO packets corresponding to these sent from
H3 to H1, and the ping process marked these as lost packets.

6. Repeat the above four steps as many times as necessary to convince yourself that
you can turn packet forwarding at R on and off using the forwarding utility.

7. Go to R and run:

forwarding -n 10

This time we are using the -n option to specify that the forwarding is to be turned
off and then back on, and that this sequence is to be repeated 10 times. The time the
forwarding remains turned off each time and the time between successive turnoffs
are random variables. This process always exits with the forwarding turned on, even
on an interrupt.

8. Once this command terminates, go to H1 and see if there are any missing ICMP
sequence numbers in the ping output, which would indicate that an
ICMP_ECHOREQUEST or ICMP_ECHO packet was lost during one of the 10
times that forwarding was turned off at R. (You may well not see such a
phenomenon, since the average time the forwarding remains off in this mode is very
small, and hence it is unlikely that it will coincide with one of the
ICMP_ECHOREQUEST or ICMP_ECHO packets.)

9. Terminate the ping process on H1 using Ctl-C. Now we are ready to observe the
behavior of TCP under similar disruptions in packet forwarding.

First go to H1 and run:

tcpdump -n -tt -s 54 > tcpdump_output.2.3

From another xterm or VT session on H1, run:

oursock -tcp -e

Go to R and run:

forwarding -n 3

After this command ends, go to H1. First terminate the oursock sending the endless
stream, and then terminate the tcpdump you started, using Ctl-C for each termination.
From the same directory from which you ran tcpdump, run:

extract_plot_data tcpdump_output.2.3

This time we expect to see some packets lost and retransmitted. In the allevents.list
file, these can be spotted easily by noting the successive sending sequence numbers.
Normally we expect the sending (either the beginning or ending) sequence number in
successive packets to have successively larger values. On a retransmission, however, TCP
resends a packet already transmitted once, so this packet would have a lower sequence
number than the immediately preceding one. The extract_plot_data script flags these
occurrences with messages of the form:

sequence number reversal at time index 7.335743

This enables you to look in the allevents.list file and quickly locate the retransmitted
packets. The time index provided is the first field in each column.

Put the allevents.list file as a file called allevents.list.2.3 in your results

8 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

directory.

Put the output of the extract_plot_data command above as a file called
sequence_reversals.2.3 in your results directory.
From the same directory, run:

plot_all_traffic

For this exercise, we recommend using GQview to examine the plot in detail.

By looking at the allevents.list file, the list of sequence number reversals and the plots,
answer the following questions. Put the answers to the following questions in a file called
conclusions.2.3 in your results directory.

1. How may sequence number reversals do you see?
2. Using the time indices you have saved in the file sequence_reversals.2.3, locate the

TCP retransmissions in the plot. Each of the retransmissions should show up as a pause in
the upward trend of the plot, with a small or large flat region which is actually sloping
slightly downward. From the plot, list the width of the flat region for each of the
retransmission regions you see.

3. Some of the retransmission regions are comparatively large and some are small. You
should see at least one large region. (If you see no large region, you should abandon this
output, and start this exercise again.) There are multiple attempts at retransmission in a
large region, whereas the first attempt at retransmission succeeds for the small regions.
For each large region, find the corresponding time index in the allevents.list file, and
list the number of retransmissions attempted by TCP during that region, together with the
time indices of the retransmission attempts.

4. Pick a particular retransmission region. Look at the segment of the plot immediately
following the "flat" region. What is the relative behavior of the send and acknowledgment
sequence number plots in this segment?

5. Is this relative behavior more like the long term behavior or more like the slow-start
behavior of the plot you obtained in exercise 2.1 ?

(Click here for Discussion on this exercise)

Deliverables for Lab session 2
2.1 - the eventlist in allevents.list.2.1, all answers in conclusions.2.1
2.2.1 - all answers in conclusions.2.2.1
2.2.2 - all answers in conclusions.2.2.2
2.3 - the eventlist in allevents.list.2.3, the list of sequence number reversals in
sequence_reversals.2.3, all answers in conclusions.2.3

Cleanup

Please delete all temporary files you produced during Lab 2. In particular, delete the
following files from your home directory on H1 (or elsewhere), if they exist:

2.1 - the tcpdump output tcpdump_output.2.1
2.2.1 - the tcpdump output tcpdump_output.2.2.1
2.2.2 - the tcpdump output tcpdump_output.2.2.2

9 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

2.3 - the tcpdump output tcpdump_output.2.3
General - the plot data and plot files *.list, *.dat, *.gif

Click here for Overview | Click here for Discussion on Lab 2

10 of 10 6/27/2001 10:30 PM

Second lab session for CSC/ECE 573 file:///C|/Vouk/573/lab2.htm

