DNS and Evidence-Based Security

WIE-KISMET
December 9, 2019

Geoffrey M. Voelker
University of California, San Diego
Evidence-Based Security

• Our work in DNS and related areas has been motivated by long-term cybersecurity projects
 ♦ Wide variety of security projects over time
 ♦ DNS often plays a role since it is a fundamental resource

• Our approach has been heavily measurement-based
 ♦ Effective intervention requires reasoning about motivations, incentives, requirements, communities
Impact of Domain Registration Policy Changes

- Dec 2009: CCNIC policy changes induces 70x change in price of .cn domains

- Effectively, a global sweeping change by a registrar
- How did that influence spammers?

Liu, Levchenko, Félegyházi, Kreibich, Maier, Voelker, Savage, On the Effects of Registrar-level Intervention, LEET 2011
Impact of New TLDs

• Explore impact of new TLDs on DNS

• Do new TLDs serve their purpose (“meet unmet needs”)?

• Approach
 ♦ Examine one new TLD in detail
 ♦ Expand to all new TLDs (circa 2014)
The .xxx TLD

- Unusual TLD with storied history
- Specialized TLD intended for adult content
 - First proposed in 2000 by ICM Registry
 - Debated for 10 years
 - “…community will consist of the responsible global online adult-entertainment community”
- Criticisms from many parties
 - Trademark holders
 - Adult entertainment industry (Free Speech Coalition)

Halvorson, Levchenko, Savage, Voelker, XXXtortion? Inferring Registration Intent in the .XXX TLD, WWW 2014
Content Categorization

• Classified all .xxx domains by type of content served
 ♦ 193,363 domains in April 2013

• Web content
 ♦ Crawled all domains in zone file
 ♦ January 10, 2013 and April 12, 2013
 ♦ Clustered using text shingling
 ♦ Generate labels using top clusters

• WHOIS records
 ♦ For identifying registered non-resolving
Reserved Domains

This domain has been reserved from registration.

Copyright 2011 ICM Registry LLC
Registered Non-Resolving

- Registered but not in zone
 \[
 \% \text{ dig ucsd.xxx} \rightarrow \text{NXDOMAIN}
 \]
- GoDaddy: “this is how to defend”
- Use ICANN reports
 - No exhaustive list
 - Can infer numbers
- Intent: Defensive
Summary

• Does .xxx meet unmet needs?

→ Absolutely not

• Little benefit to intended demographic
 ♦ Whatever adult content is out there, it’s not in .xxx

• Huge cost to everyone else
 ♦ Defensive registrations 93% of ongoing revenue
 ♦ To protect yourself, you have to register to prevent someone else from registering it for you
New gTLDs

• Comprehensively identify all domains in new TLDs
 ♦ New TLDs up to 2015
 ♦ Register for zone file access at ICANN
 ♦ Download over 500 zone files daily

• DNS + Web crawl for content
 ♦ Every domain in a new TLD
 ♦ Millions from old TLDs (for reference)
 ♦ Web: 150GB visit, 1.5TB screenshots

• Cluster + label downloaded content
 ♦ Bag of words, k-means, active learning

Halvorson, Der, Foster, Savage, Saul, Voelker, From .academy to .zone: An Analysis of the New TLD Land Rush, IMC 2015
Content in Top TLDs
Registration Intent

<table>
<thead>
<tr>
<th>Registration Intent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>378,401</td>
</tr>
<tr>
<td>Defensive</td>
<td>1,005,109</td>
</tr>
<tr>
<td>Speculative</td>
<td>1,161,892</td>
</tr>
</tbody>
</table>

Primary registrations the lowest category
Registrar-level Attacks

• Recently we have been interested in registrar attacks
 ♦ Registrar compromise, registrar account compromise, etc.

• Attackers gain substantial leverage
 ♦ Shadow subdomains, DNS hijacking, etc.
 ♦ Motivated by attacks such as the 2014 Snecma.fr attack
 ♦ Particularly problematic since changes come from “owner”

• Have been focusing on nameservers in particular
 ♦ Valuable targets, particularly useful for hijacking
Nameserver Abuse

• Initially focused on suspicious nameserver activity
 ◦ Active crawls and passive zone files
• But unusual behaviors can have benign explanations
 ◦ New NS added for 1-2 days that maps to an unusual /24?
 ◦ Sometimes highly suspicious…sometimes benign
• Have been systematically categorizing nameserver dynamics to establish a “baseline”
 ◦ Consistency
 ➢ Misconfigurations, incomplete data, routing issues, etc.
 ◦ Diversity
 ➢ Topological concentration of NS’s and domains that use them
 ◦ Dynamics
 ◦ Joint with University of Twente, CAIDA, Ian Foster
Threat Intel

- Threat Intelligence (TI) feeds distribute “indicators of compromise” for input into defenses
 - IP addresses, file hashes, domain names, URLs
 - Appearing on a feed indicates something “bad”
- Using feeds now a standard operational practice
 - Many feed sources, both public and commercial
- How can a user evaluate the quality and utility of threat intelligence feeds?
 - How do you choose which feed to use, or how many?
 - How useful are they? (How do you define useful?)

Li, Dunn, Pearce, McCoy, Voelker, Savage, Levchenko, Reading the Tea Leaves: A Comparative Analysis of Threat Intelligence, USENIX Security 2019
Threat Intel Evaluation

• Define six metrics for evaluation
 ♦ Volume, differential contribution, exclusive contribution, latency, accuracy, coverage

• Define methods for calculating metrics across feeds
 ♦ Account for variations (e.g., snapshot vs event)

• Examine 47 IP feeds and 8 malware hash feeds
 ♦ Dec 2017 – July 2018
 ♦ Commercial and public feeds
 ♦ Categorized into six types: scan, brute force, malware, botnet, exploit, spam
Threat Intel Results

• Significant issues across the metrics
 ♦ Coverage is poor when compared to ground truth data
 ➢ Scan feeds all combined only account for 2% of telescope scans
 ♦ Accuracy issues can lead to false positives
 ➢ Non-trivial amount of unroutable, top Alexa, CDN IPs
 ♦ Most IP indicators are singletons (very low intersection)
 ♦ Little evidence that larger feeds contain better data

• Challenges
 ♦ Providers do not explain how data is collected and labelled
 ➢ Left to users to decide how to interpret
 ♦ Little insight into operational uses of feeds