Operationalizing Yarrp: High-Speed Active Network Topology Mapping from AWS

https://yarrp.nps.tancad.net/
Justin P. Rohrer (jprohrer@nps.edu)
Department of Computer Science
US Naval Postgraduate School
AIMS-KISMET, February 28, 2020
alternate title:
How we’ve collected hourly Internet topology snapshots for the last 6 months*

* Except for the month where AWS shut us down
Background
Background

• Yarrp is a thing: https://www.cmand.org/yarrp/
 • Probing rates ~1M PPS

• Active Network Topology Mapping:
 • Send probes into the network from vantage points
 • Induce routers to send responses
 • Build a map of how Internet is connected and data forwarded

• Goal: create/collect Internet topology “snapshots”
 • E.g. probe all IPv4 /24s within 5 minutes
 • Compare snapshots over time

• Vantage points supporting Yarrp CPU/BW are hard to find/maintain
Major Yarrp Milestones

- IMC: Yarrp Pub.
- yarrp-0.2: UDP, ICMP support
- CAIDA Full Internet scan
- yarrp-0.5: fill mode, multi-instance
- IMC: IP of Beholder Pub.
- Yarrp on AWS
- Multipath Yarrp
- yarrp-0.6: features
Deploying Yarrp in the cloud
Distributed Yarrp (Freyr)

• Running Yarrp from multiple locations:
 • Provides greater discovery
 • Allows for higher aggregate rates

• Needs:
 • Deploy Yarrp at scale
 • Provide manageability and elasticity
 • Provide fault-tolerance and robustness

• Plan:
 • use AWS compute/bandwidth resources at geographically distributed vantage points
Challenges

• AWS designed to do the same job many times in one place (AZ)
 • Most services don’t support cross-region operation
• Undocumented behavior, easily overwhelmed middleboxes
 • E.g. security policy allow ICMP from ANY drops 90% of inbound ICMP
• All hosts NATed, even when assigned public IPs
• PTR record support extremely limited, only for SMTP servers
• IPv6 support not on par with IPv4
• No sysadmin to design/operate this
 • Needs to keep running with only sporadic attention from me
• High-bandwidth/CPU instances are expensive
• Getting data out of AWS is expensive
Yarrp AWS deployment scope

- Deployed to vantage points (VPs) in 15 datacenters worldwide
 - Particular measurements may use subset or all VPs
 - Targets may be distributed across VPs
 - Automatic resilience – unresponsive VP targets reassigned to responsive VPs
 - Targets may be probed in parallel by multiple VPs
Yarrp AWS deployment architecture

- Includes global (orchestration) infrastructure
 - Process & distribute targets to regions; Collect & process results
- Per-region probing resources are replicated to all data centers
Operational Status

• Probing Set 1:
 • A target address in each routed /24 of the IPv4 Internet
 • Once per hour
 • Distributed across 15 AWS regions

• Probing Set 2:
 • A target address in each routed /16 of the IPv4 Internet
 • Once per hour
 • Redundantly by all AWS regions

• Data available on request. Large downloads use “requester pays” model

• Currently running continuous production, work proceeds to improve user interface, add IPv6 support, etc.
Lessons Learned
AWS Policy Interactions

• Traceroute is not a violation of the AWS Acceptable Use Policy
 • But it could still get your account shut down
• Abuse reports only go to the root account
• The security and abuse team will never interact with users directly
 • A user must have an AWS account manager to advocate for them
• Each region has different limitations
 • E.g. don’t send packets with TTL=10 in region X
Topology Observations

• There are 10-12 (region dependent) hops between ec2 and Internet
 • Mostly in 100.64.0.0/10 shared address space (RFC6598)
• Comparing snapshots is hard due to prevalence of load-balancing
 • 65% of paths have load-balancing
 • Significant load-balancing between ASes
 • Observed diamonds with 100s of nodes and 1000s of edges
 • Flows rebalanced periodically (order of hrs)
Collaboration Goals

• Share the data
 • AWS S3 requester-pays model

• Make Yarrp data queryable
 • Via AWS Athena (BigTable equivalent)
 • Support multipath (primitive type can’t be traceroute)

• Feedback on usefulness of hourly snapshots
 • Or, what is the “right” snapshot frequency

• Feedback on target set permutation and goals
 • Reuse for longitudinal analysis
 • Permutation for coverage
End of slides