Japan-EU Joint Research: GreenICN, and Proactive Content Caching and Delivery Scheme Utilizing Transportation Systems

Hidenori Nakazato†, Yong-Jin Park†, and Atsushi Tagami‡

† Waseda University
‡ KDDI R&D Laboratories Inc.

September 5, 2014
Outline

- GreenICN Overview
- Proactive Content Caching and Delivery Scheme in Public Transportation Systems
GreenICN: Architecture and Applications of Green Information Centric Networking
GreenICN is a project funded by both European Commission and Japanese government.

The objective is to design a network and end-devices able to operate in a highly scalable, energy-efficient and backward compatible way while exploiting advantages of ICN.

3 year project started in April 2014.

6 European and 6 Japanese partners collaborate in the project.

Website: http://www.greenicn.org/

The GreenICN Network layer is an enhanced NDN module where we add additional functionality and improve existing solutions.
Objectives

- GreenICN addresses how the ICN network and devices can operate in a highly scalable and energy-efficient way.
- Two exemplary application scenarios:
 1. Aftermath of a disaster:
 - Energy and communication resources are at a premium.
 - Efficient distribution of disaster notification and rescue information is critical.
 - Key issue: Ability to exploit fragmented networks with only intermittent connectivity.
 2. Video delivery:
 - Video consumes large part of current network bandwidth.
 - Efficient delivery of video is crucial to have successful deployment of ICN networks.
 - Key issue: Scalable and efficient video delivery exploiting features of ICN such as in-network caching and name-based forwarding while saving energy consumption.
Project Goals

- Reduction of power consumption
 - 20% for normal days
 - EU aims to reduce 20% of the total energy consumption of all EU countries.
 - Japan aims to reduce energy consumption 30% by 2030, compared to that in 2003.
 - 40% for Disasters
 - In 2011, people in Tohoku area suffered 3 days of blackout because of the East Japan Earthquake.
 - Reduction to make communication services and related base stations able to operate 3 days in such a scenario.
Project Goals (cont’d)

- **Seamless services** before and after a disaster
 - From 2011 East Japan Earthquake: people want to keep on using terminals and services they are accustomed to and not those specifically designed for disasters.

- **Migration path**
 - Friendly coexistence of GreenICN with current IP network

- **Scalability**
 - Appropriate performance to be usable in the real world.

- **ICN-enabled end-systems** and a new API
 - A middleware platform provides functionality too complex to be implemented at line-speed in the network layer, allowing end-devices to fully exploit ICN potentials.
Project Structure

GreenICN Infrastructure

WP1
- End Systems and APIs
- Traffic and Resource Control
- Support Routing and Caching in Fragmented Networks

WP2
- Information Delivery in Disaster Scenarios
- Fragmented Network
- Access Control and Management in fragmented networks

WP3
- ICN for Green Video Sharing
- Forwarding Strategy and IP Migration
- Energy-Efficient Mobile Video Delivery and Caching
- Naming, Routing, Mobility and Node Architecture

WP4
- Current Status

WP5
- Proactive Video Content Caching and Delivery in Public Transportation Systems

Objectives
- Project Goals

Project Partners

GreenICN Project Structure

Copyright ©2014 by GreenICN Project. All rights reserved.
Last Revised at 14:41 September 1, 2014.
<table>
<thead>
<tr>
<th>WP</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Project Management</td>
</tr>
<tr>
<td>1</td>
<td>Requirements and Architecture for Green Information Delivery Network</td>
</tr>
<tr>
<td>2</td>
<td>Green Disaster Information Delivery and Rescue Management</td>
</tr>
<tr>
<td>3</td>
<td>Green Video Sharing</td>
</tr>
<tr>
<td>4</td>
<td>Prototype Implementation and Evaluation</td>
</tr>
<tr>
<td>5</td>
<td>Dissemination, Standardizations and Exploitation</td>
</tr>
</tbody>
</table>
WP1: Requirements and Architecture for Green Information Delivery Network

Goal: Identifying use scenarios and requirements and define the GreenICN architecture.

Use scenarios and requirements

Defining the overall GreenICN architectural framework, which will be used by the other WPs as the reference.

GreenICN end systems and APIs

Developing and specifying their instantiation in a middleware that makes it to optimal exploit the GreenICN features.

Traffic and resource control

Designing resource (e.g., storage, memory, queue, bandwidth and so on) control scheme to realize priority and congestion control efficiently and robustly.

Routing and Forwarding Strategies

Designing the routing, forwarding, naming, mobility and the overall GreenICN node architecture for green information delivery networking.
WP2: Green Disaster Information Delivery and Rescue Management

Goal: Support for large-scale energy-efficient disaster information delivery for fragmented/disrupted mobile networks.
WP3: Green Video Sharing

Goal: A framework for collaboration and sharing in order to achieve energy-efficient video delivery.

- Framework
 Designing the framework for transmission planning in space and time, taking into account that the same content may be available at many different network locations due to in-network caching.

- Forwarding strategy and IP migration
 Defining clearly a migration path from the current IP infrastructure to a content-based publish/subscribe support for ICN.

- Energy-Efficient Mobile Video Delivery and Caching
 Investigating optimum solution for client mobility: for content mobility as well as for network mobility in terms of energy consumption.

- Implementation and validation of applications for Video Delivery
 Extending/adapting essential functions to support video delivery and design applications exploiting such functionality.
Goals:

- Implementation and validation of device-side ICN and middleware functionality
- Implementation and validation of network-side ICN functionality
- Implementation and validation of applications for Disaster and Rescue Management.
- Implementation and validation of applications for Video Delivery
Goals:

- **Dissemination**: Spreading the developed technology to research community.
- **Standardization**: Making the developed technology international standards.
- **Exploitation**: Making products out of the developed technology.
Current Status

- **Plenary meetings:**
 - Brussels (including official review): 13-16 May 2014.

- **Deliverables:**
 - 14 internal documents were completed.

- **Liaisons with other groups:**
 - MPEG
 - IRTF ICNRG
 - ITU-T Focus Group on Disaster Relief Systems, Network Resilience and Recovery
Proactive Video Content Caching and Delivery in Public Transportation Systems
Motivation and Objective

- Explosion of mobile video traffic: video traffic increase 11 times from 2013 to 2018.
- Mobile video traffic shares about 70% of mobile traffic.

Objective: Reduction of traffic and energy consumption by installing network infrastructure in public transportation systems

◆ The idea of this work was developed in GreenICN project. The implementation for the field experiment was supported by Ministry of Internal Affairs and Communications as a part of the Project for Promotion of Advanced Communication Applications Development.
Name-based addressing help predicting content to be requested in the near future in network layer.

Also name helps aggregating multiple video sessions from the server to a single session with multiple sessions from caches.
Smart Scheduler:

- It determines content quality and the amount of segments to deliver, and selects delivery locations and timing.
- It also communicates with station servers to inform them to transmit appropriate interest packets.
- The control message protocol is not determined at this moment and IP is used in the field experiment.
Architecture

- **Train Information Database:**
 - It holds train schedule to be used to schedule video content delivery.

- **Station Server:**
 - It generates interest packets according instruction given by the smart scheduler, caches the delivered content.
 - It also delivers the cached content to the appropriate train server.

- **Train Server:**
 - It is an ordinary NDN router which establishes a broadband communication path, such as millimeter wavy wireless connection, with station servers when the train passes stations.
 - It has Wi-Fi interface to communicate with mobile phones.
Smart scheduler dynamically selects MPEG-DASH contents depending on transit time between stations, stoppage time, network bandwidth (server – station – train – user), number of users in a train, to sustain uninterrupted video streaming.
Select the content rate R_i that satisfies:

- **Proactive caching condition:** $S_i \leq B_i(t_{i+1} - t_0)$
- **Continuous playback condition:** $S_i/J_i \geq R_i(t_{i+1} - t_i)$
- **Smooth playback condition:** $D/J_i \geq R_i$,

where D is the estimated bandwidth between a train server and a user device.

\[
B_i \text{: backbone link bandwidth from server to station } i \\
S_i \text{: total downloaded data size at station } i \\
J_i \text{: \# video titles between station } i \text{ and } i+1
\]
Simulation

- Performance of proactive caching is evaluated on NDNsim.
- The assumed network environment is:
When there are QoS degradations, such as larger delay and narrower bandwidth, in the nearest link to the content server, the gain for our proposal is larger.
Field experiment using real trains is carried out using our prototype system.\(^1\)

\(^1\)Field experiment environment was provided by Keikyu Corporation, a railroad company.
Proactive caching prevent dropping throughput and sustain continuous playback.
Conclusions

- We proposed and evaluated proactive caching in public transportation environment.
- Proactive caching can maintain uninterrupted video playback by properly caching future content at appropriate cache.