NDN Real Time Conferencing Library

Peter Gusev, Jeff Burke, Zhehao Wang
Center for Research in Engineering, Media and Performance; Internet Research Lab
University of California, Los Angeles (UCLA)

Introduction

Design Goals

- Real-time audio/video/text chat library which allows many-to-many conferencing over the NDN network and requires no direct communication between peers
- Starting point for NDN traffic congestion control algorithm research
- Test NDN-CPP library and NFD
- Traffic generator for the testbed

Namespace Design

- Root: User prefix (username)
- Media streams
- Encoding threads: Individual encoding parameters
- Frame type: Key and Delta frames
- Packet: Individual media packets
- Data type: Data and Parity segments
- Segments: Actual NDN-data objects

Buffering

- Cache exhausting:
 - Latest data can’t arrive faster producing rate
 - Cached data arrives at the rate it was requested
- Chase mode:
 - Issue interest for the RIGHTMOST segment
 - Pipeline interests for first segments of the following frames with higher than producer rate
 - Monitor segments arrival interval
- Future improvement: use audio stream for chasing video

Frame fetching

- Generation delay d^{gen} – time interval between receiving an interest and satisfying it with data (producer-side)
- Assembling time d^{asm} – time needed to fetch all frame segments (consumer side)
- RTT_n – round trip time for the interest (consumer side)

Start-up

- Consumer for 3 streams: NDNComm, REMAP and Demo-2
 - Producer: webcam producer (SD, 25fps, 500kbps)
 - connected to UA NFD (Ariona)
 - NDN-RTC prefix: /ndn/edu/arizona, NDN-RTC username: demo1
- Demo 1:
 - Consumer for 3 streams: NDNComm, REMAP and Demo-1
 - Producer: webcam producer (SD, 25fps, 500kbps)
 - connected to UA NFD (Ariona)
 - NDN-RTC prefix: /ndn/edu/arizona, NDN-RTC username: demo2
- Simulated link break b/w Arizona and CAIDA every minute

Future Work

- Real-time Adaptive Rate Control
 - In collaboration with Panasonic R&D department (Muramoto-san, Yoneda-san)
 - Keep low-latency transmission & best throughput
 - Maintain RTT fairness (self-fairness)
 - Consumer-driven
 - NW bandwidth estimation based on RTT and timeouts
 - Control interest rate according to bandwidth estimation
- Conference discovery
- Browser integration
 - NDN-RTC Firefox NPAPI plug-in
- Security:
 - Web of Trust model
 - Media encryption
- Desktop conferencing tool