
Logging System for Long-
lifetime Data Validation

Yingdi Yu
UCLA

1



Lifetime of data vs. signing key

• Lifetime of a data packet
– depends on data usage
– may exist for a long time 
– even forever

2



Lifetime of data vs. signing key

• Lifetime of a data packet
– depends on data usage
– may exist for a long time 
– even forever

• Lifetime of a signing key
– must be limited

3



How to maintain long-lived data

4



How to maintain long-lived data

• Re-sign data with a new key
– maintenance is complicated

• key rollover
• publishing re-signed data

5



How to maintain long-lived data

• Re-sign data with a new key
– maintenance is complicated

• key rollover
• publishing re-signed data

• Can we sign data once and leave it 
alone?
– post-fact validation

• validate data with an expired key?

6



Post-Fact Validation

7



Post-Fact Validation

• Key was valid at the moment of 
signing
– though it is invalid now

8



Post-Fact Validation

• Key was valid at the moment of 
signing
– though it is invalid now

• Check if the signature was generated 
during the valid period of the key

9



Post-Fact Validation

• Key was valid at the moment of 
signing
– though it is invalid now

• Check if the signature was generated 
during the valid period of the key

• Can we have a time machine to go 
back?
– a logging system may help!

10



What to log?
• Assume we have a honest logger

11



What to log?
• Assume we have a honest logger
• Given a long-lived data

– data name: retrieve data when necessary
– data digest: integrity checking
– signing timestamp

12



What to log?
• Assume we have a honest logger
• Given a long-lived data

– data name: retrieve data when necessary
– data digest: integrity checking
– signing timestamp

• But also signing key
– name, digest, inserting timestamp (and revoking 

timestamp if needed)

13



What to log?
• Assume we have a honest logger
• Given a long-lived data

– data name: retrieve data when necessary
– data digest: integrity checking
– signing timestamp

• But also signing key
– name, digest, inserting timestamp (and revoking 

timestamp if needed)

14



Secure logger

15



Secure logger

• A trusted third party?
– not every one will trust the same third party
– no entity lasts forever

16



Secure logger

• A trusted third party?
– not every one will trust the same third party
– no entity lasts forever

• Publicly auditable logger
– anyone can audit the logger

• data signers, data consumers, certificate issuers, 
independent third parties, …

17



Secure logger

• A trusted third party?
– not every one will trust the same third party
– no entity lasts forever

• Publicly auditable logger
– anyone can audit the logger

• data signers, data consumers, certificate issuers, 
independent third parties, …

– force logger to behave honestly

18



Secure logger

• A trusted third party?
– not every one will trust the same third party
– no entity lasts forever

• Publicly auditable logger
– anyone can audit the logger

• data signers, data consumers, certificate issuers, 
independent third parties, …

– force logger to behave honestly
– tamper-evident log

19



Tamper-Evident Log

20



Tamper-Evident Log

• Hash chain
– Bitcoin
– simple, space effient
– slow to check

21



Tamper-Evident Log

• Hash chain
– Bitcoin
– simple, space effient
– slow to check

22



Tamper-Evident Log

• Hash chain
– Bitcoin
– simple, space effient
– slow to check

• MerkleTree
– Certificate Transparency
– efficient checking

23



Tamper-Evident Log

• Hash chain
– Bitcoin
– simple, space effient
– slow to check

• MerkleTree
– Certificate Transparency
– efficient checking

24



MerkleTree in NDN

25



MerkleTree in NDN
• A MerkleTree consists of sub-trees

26



MerkleTree in NDN
• A MerkleTree consists of sub-trees
• Each sub-tree

– fixed by its root
• easy to verify

27



MerkleTree in NDN
• A MerkleTree consists of sub-trees
• Each sub-tree

– fixed by its root
• easy to verify

– fixed by its index (level, seqNo)
• easy to retrieve

28



MerkleTree in NDN
• A MerkleTree consists of sub-trees
• Each sub-tree

– fixed by its root
• easy to verify

– fixed by its index (level, seqNo)
• easy to retrieve

– once complete, become frozen
• can be cached

29



MerkleTree in NDN
• A MerkleTree consists of sub-trees
• Each sub-tree

– fixed by its root
• easy to verify

– fixed by its index (level, seqNo)
• easy to retrieve

– once complete, become frozen
• can be cached

• Encode each sub tree in a data packet
– name: /<loggerPrefix>/[subTreeIndex]/[digest]
– content: node digests in BFS order

30



MerkleTree in NDN
• A MerkleTree consists of sub-trees
• Each sub-tree

– fixed by its root
• easy to verify

– fixed by its index (level, seqNo)
• easy to retrieve

– once complete, become frozen
• can be cached

• Encode each sub tree in a data packet
– name: /<loggerPrefix>/[subTreeIndex]/[digest]
– content: node digests in BFS order

• Leaf node
– name: /<loggerPrefix>/leaf/[seqNo]
– detailed info (signed data, timestamp…)

31



Storage of log & data

32



Storage of log & data
• Store log & data separately

– Loggers maintain log
– Users maintain actual data

• no need to retrieve log for unavailable data

33



Storage of log & data
• Store log & data separately

– Loggers maintain log
– Users maintain actual data

• no need to retrieve log for unavailable data
• User cannot change actual data

– digest is fixed in log

34



Storage of log & data
• Store log & data separately

– Loggers maintain log
– Users maintain actual data

• no need to retrieve log for unavailable data
• User cannot change actual data

– digest is fixed in log
• Users may even keep a sub-tree

– contain a user’s own data
– could be incomplete
– root digest is fixed in log

35



Multiple Loggers

36



Multiple Loggers
• Loggers may serve different purposes

– different namespaces, different trust 
models

• e.g., each organization may have its own 
logger to log their own data

37



Multiple Loggers
• Loggers may serve different purposes

– different namespaces, different trust 
models

• e.g., each organization may have its own 
logger to log their own data

• Loggers synchronize with each other

38



Multiple Loggers
• Loggers may serve different purposes

– different namespaces, different trust 
models

• e.g., each organization may have its own 
logger to log their own data

• Loggers synchronize with each other
– improve redundancy 

39



Multiple Loggers
• Loggers may serve different purposes

– different namespaces, different trust 
models

• e.g., each organization may have its own 
logger to log their own data

• Loggers synchronize with each other
– improve redundancy 
– automatically audit each other

40



Multiple Loggers
• Loggers may serve different purposes

– different namespaces, different trust 
models

• e.g., each organization may have its own 
logger to log their own data

• Loggers synchronize with each other
– improve redundancy 
– automatically audit each other
– using/extending ChronoSync

• each logger has its own prefix & seqNo

41



Hash Agility
• Temper-evident log is based on hash 

function
• A hash function may be broken 

eventually

42



Hash Agility
• Temper-evident log is based on hash 

function
• A hash function may be broken 

eventually
• Two copies using different hash functions

– one is relatively stronger than the other
• e.g., Sha256(B), Sha3-384(B)

43



Hash Agility
• Temper-evident log is based on hash 

function
• A hash function may be broken 

eventually
• Two copies using different hash functions

– one is relatively stronger than the other
• e.g., Sha256(B), Sha3-384(B)

– assume: not broken on the same day
• weaker broken, stronger still valid
• enough time to reconstruct another copy with a 

stronger hash at that time
• hopefully, it rarely happens

44



Conclusion

• logging system enables 
– post-fact validation
– usage of short-lived keys

• Secure logging system through public 
auditing

• Increase redundancy of certificate 
provisioning

45



Thank you!

yingdi@cs.ucla.edu

46


	Logging System for Long-lifetime Data Validation
	Lifetime of data vs. signing key
	Lifetime of data vs. signing key
	How to maintain long-lived data
	How to maintain long-lived data
	How to maintain long-lived data
	Post-Fact Validation
	Post-Fact Validation
	Post-Fact Validation
	Post-Fact Validation
	What to log?
	What to log?
	What to log?
	What to log?
	Secure logger
	Secure logger
	Secure logger
	Secure logger
	Secure logger
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	Storage of log & data
	Storage of log & data
	Storage of log & data
	Storage of log & data
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Hash Agility
	Hash Agility
	Hash Agility
	Conclusion
	Thank you!

