Logging System for Long-
Ifetime Data Validation



Lifetime of data vs. signing key

e Lifetime of a data packet
— depends on data usage
— may exist for a long time
— even forever



Lifetime of data vs. signing key

e Lifetime of a data packet
— depends on data usage
— may exist for a long time
— even forever

o Lifetime of a sighing key
— must be limited
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How to maintain long-lived data

 Re-sign data with a new key

— maintenance is complicated
» key rollover
e publishing re-signed data
« Can we sign data once and leave it
alone?

— post-fact validation
« validate data with an expired key?
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Post-Fact Validation

 Key was valid at the moment of
signing
—though it is invalid now

 Check if the signhature was generated
during the valid period of the key

« Can we have a time maChlne to go
back?

— a logging system may help!
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What to log?

« Assume we have a honest logger
 Given along-lived data
— data name: retrieve data when necessary
— data digest: integrity checking
— signing timestamp
e But also sighing key

— name, digest, inserting timestamp (and revoking
timestamp if needed)
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Secure logger

e A trusted third party?
— not every one will trust the same third party
— no entity lasts forever

 Publicly auditable logger

— anyone can audit the logger

o data signers, data consumers, certificate issuers,
iIndependent third parties, ...

— force logger to behave honestly
— tamper-evident log
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Tamper-Evident Log
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MerkleTree in NDN

A MerkleTree consists of sub-trees

Each sub-tree

— fixed by its root
» easy to verify

— fixed by its index (level, segNo)
e easy to retrieve

— once complete, become frozen
 can be cached

Encode each sub tree in a data packet

— name: /<loggerPrefix>/[subTreelndex]/[digest]
— content: node digests in BFS order

Leaf node

— name: /<loggerPrefix>/leaf/[seqNoO]

— detailed info (signed data, timestamp...)
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Storage of log & data

e Store log & data separately
— Loggers maintain log

— Users maintain actual data
* NnO need to retrieve log for unavailable data

e User cannot change actual data
— digest is fixed in log

« Users may even keep a sub-tree
— contain a user’s own data

— could be incomplete
— root digest is fixed in log
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Multiple Loggers

 Loggers may serve different purposes

— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

 Loggers synchronize with each other
— Improve redundancy
— automatically audit each other

— using/extending ChronoSync
 each logger has its own prefix & seqNo
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Hash Agility

« Temper-evident log is based on hash
function

A hash function may be broken
eventually

e TwoO copies using different hash functions

— one Is relatively stronger than the other
* e.dg., Sha256(B), Sha3-384(B)

— assume: not broken on the same day
« weaker broken, stronger still valid

« enough time to reconstruct another copy with a
stronger hash at that time

* hopefully, it rarely happens



Conclusion

* logging system enables
— post-fact validation
— usage of short-lived keys

e Secure logging system through public
auditing

* Increase redundancy of certificate
provisioning



Thank you!

yingdi@cs.ucla.edu
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