Logging System for Long-
Ifetime Data Validation

Lifetime of data vs. signing key

e Lifetime of a data packet
— depends on data usage
— may exist for a long time
— even forever

Lifetime of data vs. signing key

e Lifetime of a data packet
— depends on data usage
— may exist for a long time
— even forever

o Lifetime of a sighing key
— must be limited

How to maintain long-lived data

How to maintain long-lived data

Re-sign data with a new key

— maintenance is complicated
» key rollover
e publishing re-signed data

How to maintain long-lived data

 Re-sign data with a new key

— maintenance is complicated
» key rollover
e publishing re-signed data
« Can we sign data once and leave it
alone?

— post-fact validation
« validate data with an expired key?

Post-Fact Validation

Post-Fact Validation

 Key was valid at the moment of
signing

—though it is invalid now

Post-Fact Validation

 Key was valid at the moment of
signing
—though it is invalid now

 Check if the signhature was generated
during the valid period of the key

Post-Fact Validation

 Key was valid at the moment of
signing
—though it is invalid now

 Check if the signhature was generated
during the valid period of the key

« Can we have a time maChlne to go
back?

— a logging system may help!

What to log?

« Assume we have a honest logger

What to log?

« Assume we have a honest logger

 Given along-lived data
— data name: retrieve data when necessary
— data digest: integrity checking
— signing timestamp

What to log?

« Assume we have a honest logger

 Given along-lived data
— data name: retrieve data when necessary
— data digest: integrity checking
— signing timestamp

e But also sighing key

— name, digest, inserting timestamp (and revoking
timestamp if needed)

What to log?

« Assume we have a honest logger
 Given along-lived data
— data name: retrieve data when necessary
— data digest: integrity checking
— signing timestamp
e But also sighing key

— name, digest, inserting timestamp (and revoking
timestamp if needed)

Add Add
ndn/KEY /ndn/ucla/alice/KEY

4 -~
! ’ I
Logger ¢ 4 h
1 !] P

1
| T
+ > -
7 1 J - -
! !] 0 ’ : Timeline
1 P
S | 4 e » 1S
Add Add Data1 signed by Add Datal? signed by
/ndn/ucla/KEY /ndn/ucla/alice/KEY /ndn/ucla}/alice/KEY

Secure logger

Secure logger

e A trusted third party?
— not every one will trust the same third party
— no entity lasts forever

Secure logger

e A trusted third party?
— not every one will trust the same third party
— no entity lasts forever

 Publicly auditable logger

— anyone can audit the logger

o data signers, data consumers, certificate issuers,
iIndependent third parties, ...

Secure logger

e A trusted third party?
— not every one will trust the same third party
— no entity lasts forever

 Publicly auditable logger

— anyone can audit the logger

o data signers, data consumers, certificate issuers,
iIndependent third parties, ...

— force logger to behave honestly

Secure logger

e A trusted third party?
— not every one will trust the same third party
— no entity lasts forever

 Publicly auditable logger

— anyone can audit the logger

o data signers, data consumers, certificate issuers,
iIndependent third parties, ...

— force logger to behave honestly
— tamper-evident log

Tamper-Evident Log

Tamper-Evident Log

« Hash chain
— Bitcoin
—simple, space effient
—slow to check

[hash1 | [hash2 | [hash3]

AL AL Al L

slot1

slot2

slot3

0
A

slotN

Tamper-Evident Log

« Hash chain
— Bitcoin
—simple, space effient
—slow to check

[hash1 |

[hash2 |

[hash3 |

No
A
slot1

A

it N SN

slot2

slot3

Tamper-Evident Log

e Hash chain Fash] [[hesh2] | [hsha)

+<;5%L@L. s

— Bitcoin 1 [—. .j

—simple, space effient

—slow to check
e MerkleTree o
— Certificate Transparency A A A
.. . AN AN TR
— efficient checking I e e

Tamper-Evident Log

e Hash chain Fash] [[hesh2] | [hsha)
. OEEEALL L LS
— Bitcoin ! 1 j
— simple, space effient
— slow to check

e MerkleTree

— Certificate Transparency? \‘? A

2
— efficient checking hlhtgo hlh: “lhﬁf =

MerkleTree in NDN

MerkleTree in NDN

e A MerkleTree consists of sub-trees

MerkleTree in NDN

e A MerkleTree consists of sub-trees

e Each sub-tree

— fixed by its root
» easy to verify

MerkleTree in NDN

e A MerkleTree consists of sub-trees

« Each sub-tree
— fixed by its root
» easy to verify
— fixed by its index (level, segNo)
e easy to retrieve

MerkleTree in NDN

e A MerkleTree consists of sub-trees

« Each sub-tree
— fixed by its root
» easy to verify
— fixed by its index (level, segNo)
e easy to retrieve

— once complete, become frozen
 can be cached

MerkleTree in NDN

e A MerkleTree consists of sub-trees

« Each sub-tree
— fixed by its root
» easy to verify
— fixed by its index (level, segNo)
e easy to retrieve
— once complete, become frozen
 can be cached
« Encode each sub tree in a data packet
— name: /<loggerPrefix>/[subTreelndex]/[digest]
— content: node digests in BFS order

MerkleTree in NDN

A MerkleTree consists of sub-trees

Each sub-tree

— fixed by its root
» easy to verify

— fixed by its index (level, segNo)
e easy to retrieve

— once complete, become frozen
 can be cached

Encode each sub tree in a data packet

— name: /<loggerPrefix>/[subTreelndex]/[digest]
— content: node digests in BFS order

Leaf node

— name: /<loggerPrefix>/leaf/[seqNoO]

— detailed info (signed data, timestamp...)

Storage of log & data

Storage of log & data

e Store log & data separately
— Loggers maintain log

— Users maintain actual data
* NnO need to retrieve log for unavailable data

Storage of log & data

e Store log & data separately
— Loggers maintain log

— Users maintain actual data
* NnO need to retrieve log for unavailable data

e User cannot change actual data
— digest is fixed in log

Storage of log & data

e Store log & data separately
— Loggers maintain log

— Users maintain actual data
* NnO need to retrieve log for unavailable data

e User cannot change actual data
— digest is fixed in log

« Users may even keep a sub-tree
— contain a user’s own data

— could be incomplete
— root digest is fixed in log

Logger's MerkIeTree/’/

PR AN) Y A e O A (U

Multiple Loggers

Multiple Loggers

 Loggers may serve different purposes
— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

Multiple Loggers

 Loggers may serve different purposes

— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

 Loggers synchronize with each other

Multiple Loggers

 Loggers may serve different purposes

— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

 Loggers synchronize with each other
— Improve redundancy

Multiple Loggers

 Loggers may serve different purposes

— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

 Loggers synchronize with each other
— Improve redundancy
— automatically audit each other

Multiple Loggers

 Loggers may serve different purposes

— different namespaces, different trust
models

e e.gd., each organization may have its own
logger to log their own data

 Loggers synchronize with each other
— Improve redundancy
— automatically audit each other

— using/extending ChronoSync
 each logger has its own prefix & seqNo

Hash Agility

« Temper-evident log is based on hash
function

A hash function may be broken
eventually

Hash Agility

« Temper-evident log is based on hash
function

A hash function may be broken
eventually

e TwoO copies using different hash functions

— one Is relatively stronger than the other
* e.g., Sha256(B), Sha3-384(B)

Hash Agility

« Temper-evident log is based on hash
function

A hash function may be broken
eventually

e TwoO copies using different hash functions

— one Is relatively stronger than the other
* e.dg., Sha256(B), Sha3-384(B)

— assume: not broken on the same day
« weaker broken, stronger still valid

« enough time to reconstruct another copy with a
stronger hash at that time

* hopefully, it rarely happens

Conclusion

* logging system enables
— post-fact validation
— usage of short-lived keys

e Secure logging system through public
auditing

* Increase redundancy of certificate
provisioning

Thank you!

yingdi@cs.ucla.edu

46

	Logging System for Long-lifetime Data Validation
	Lifetime of data vs. signing key
	Lifetime of data vs. signing key
	How to maintain long-lived data
	How to maintain long-lived data
	How to maintain long-lived data
	Post-Fact Validation
	Post-Fact Validation
	Post-Fact Validation
	Post-Fact Validation
	What to log?
	What to log?
	What to log?
	What to log?
	Secure logger
	Secure logger
	Secure logger
	Secure logger
	Secure logger
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	Tamper-Evident Log
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	MerkleTree in NDN
	Storage of log & data
	Storage of log & data
	Storage of log & data
	Storage of log & data
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Multiple Loggers
	Hash Agility
	Hash Agility
	Hash Agility
	Conclusion
	Thank you!

