

Hyperbolic vs. Link-State Routing in NDN

Vince Lehman, Ashlesh Gawande, Lan Wang, University of Memphis Rodrigo Aldecoa, Dmitri Krioukov, Northeastern University Beichuan Zhang, University of Arizona Lixia Zhang, UCLA

Routing Scalability in NDN

• Forwarding Information Base (FIB) in NDN could grow at an unmanageable rate

• Number of routing updates (overhead) to maintain consistent FIBs may also be costly

NDN networks must scale in terms of name prefixes and routing protocol overhead

Hyperbolic Routing

Greedy geographic routing based on hyperbolic coordinates that encode network geometry

Destination	Next hops
D	{A, cost=10}, {B, cost=30}

To forward a packet:

- Find the neighbor closest to the destination
- Forward the packet to that neighbor

Hyperbolic Routing

Greedy geographic routing based on hyperbolic coordinates that encode network geometry

Destination	Next hops
D	{A, cost=10}, {B, cost=30}

To forward a packet:

- Find the neighbor closest to the destination
- Forward the packet to that neighbor

Hyperbolic Routing

Greedy geographic routing based on hyperbolic coordinates that encode network geometry

To forward a packet:

- Find the neighbor closest to the destination
- Forward the packet to that neighbor

U M

Why Hyperbolic Routing (HR)?

- In the ideal case, no FIB is needed
- Low communication cost
 Few routing updates, as coordinates rarely change
- Drawbacks?
 - Suboptimal paths
 - Local minima
 - Does not react to network dynamics
- How to mitigate these drawbacks?

Forwarding Strategy

• Use Hyperbolic Routing's ranking as a hint, but probe alternative routes periodically

- Adaptive SRTT-Based Forwarding
 - Best SRTT-Based Forwarding
 - Probabilistic SRTT-Based Probing

HR Deployment in NDN

- Interest carries name and coordinates
- Forwarder picks next hop using neighbors' distances to coordinates
- Consumer can fetch coordinates from a distributed database (e.g. NDNS)
- **Note**: Name is first • Coordinate Database (e.g., NDNS) Request matched against coordinates Coordinates Radius: 12.34 CS, so still Data Angle: 1.23 Forwarder centric Content 7 Route Forwarding Consumer PIT Strategy Store Cache Interest Forward Coordinates Data Add incoming Calculate interface route

Evaluation Goals

- We know HR has no FIB and updates, but:
 - Under HR, can forwarding strategy find optimal paths during failures and recoveries?
 - Is performance similar to link-state routing implemented by Named Data Link-State Routing (NLSR)?
 - Is probing overhead less than update overhead?
 - Does overhead scale as topology size increases?

has median close to 1 and 95th-percentile below 2.

Message Overhead

LS vs HR Per Node Overhead Under MCN Failure

# Nodes	LS Overhead	HR Overhead
22	2.2 pps	0.28 pps
41	7.8 pps	0.28 pps
58	17.5 pps	0.36 pps
78	39.4 pps	0.47 pps

