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Overview

e NDN enables full utilization of bandwidth and storage.

e Focus on user demand rate for content satisfied by network, rather than
session rates.

e General VIP framework for caching, forwarding and congestion control.

e Distributed caching, forwarding, congestion control algorithms which max-
imize aggregate utility subject to network layer stability.

e VIP congestion control enables fairness among content types.

e Experimental results: superior performance in user delay, rate of cache
hits, utility-delay tradeoff.



Network Model

e General connected network with bidirectional links and set of caches.
e Each node n aggregates many network users.

e Content in network identified as set /C of data objects.

e For each data object k, there is set of content source nodes.

e |[Ps for given data object can enter at any node, exit when satisfied by
matching DP at content source, or at caching points.

e Content sources fixed, while caching points may vary in time.

e Assume routing (topology discovery and data reachability) already done:
FIBs populated for various data objects.



Virtual Interest Packets and VIP Framework

e For each interest packet (IP) for data object k entering network, generate
1 (or ¢) corresponding VIP(s) for object k.

e IPs may be suppressed/collapsed at NDN nodes, VIPs are not sup-
pressed /collapsed.

e VIPs represent locally measured demand/popularity for data objects.
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e General VIP framework: control and optimization on VIPs in virtual plane;
mapping to actual plane.



VIP Potentials and Gradients

e Each node n maintains a separate VIP queue for each data object k.

e VIP queue size for node n and data object k£ at beginning of time slot ¢
is counter V¥(t).

e Initially, all VIP counters are 0. As VIPs are created along with IP re-
quests, VIP counters incremented at entry nodes.

e VIPs for object k& removed at content sources and caching nodes for
object k: sinks or attractors.

e Physically, VIP count represent potential. For any data object, there is
downward gradient from entry points of |IP requests to sinks.



Throughput Optimal Caching and Forwarding

e VIP count used as common metric for determining caching and forwarding
in virtual and actual control planes.

e Forwarding strategy in virtual plane uses backpressure algorithm.

e Multipath forwarding algorithm; incorporates link capacities on reverse
path taken by DPs.

e Caching strategy given by the solution of max-weight knapsack problem
involving VIP counts.

e VIP forwarding and caching algorithm exploits both bandwidth and stor-
age resources to maximally balance out VIP load, preventing congestion

buildup.

e Both forwarding and caching algorithms are distributed.



VIP Stability Region and Throughput Optimality

e \* = long-term exogenous VIP arrival rate at node n for object k:

e VIP network stability region A = set of all XA = (A\¥).cxc.nen for which
there exist some feasible joint forwarding/caching policy which can guar-
antee that all VIP queues are stable.

e VIP Algorithm is throughput optimal in virtual plane: adaptively stabilizes
all VIP queues for any A € int(A\) without knowing A.

e Forwarding of Interest Packets in actual plane: forward each IP on link
with maximum average VIP flow over sliding window.

e Caching of Data Packets in actual plane: designed stable caching algo-
rithm based on VIP flow in virtual plane.



VIP Congestion Control

e Even with optimal caching and forwarding, excessively large request rates
can overwhelm network.

e No source-destination pairs: traditional congestion control algorithms
Inappropriate.

e Need content-based congestion control to cut back demand rates fairly.

e VIP framework: can optimally combine congestion control with caching
and forwarding.

e Hop-by-hop content-based backpressure approach; no concept of flow.



VIP Congestion Control

e Arriving IPs (VIPs) first enter transport layer queues before being admit-
ted to network layer.

e VIP counts relay congestion signal to IP entry nodes via backpressure
effect.

e Congestion control: support a portion of VIPs which maximizes sum of
utilities subject to network layer VIP queue stability.

e Choice of utility functions lead to various fairness notions (e.g. max-min,
proportional fairness).



Utility Maximization Subject to Network Stability

e O-optimal admitted VIP rate:

a’*(0) = arg max Z Z g (o‘sz)
“ neN kek
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e g¥(-): increasing, concave content-based utility functions.
e & = IP (VIP) input rates admitted to network layer.

e O = margin to boundary of VIP stability region A.

e Maximum sum utility achieved at &@*(0) when 6 = 0.

e Tradeoff between sum utility attained and user delay.



Transport and Network Layer VIP Dynamics

e Transport-layer queue evolution:

Qh(t+ 1) = min { (Q4(t) — ak(1)” + AL(H), Qs |

e Network-layer VIP count evolution:
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Joint Congestion Control, Caching and Forwarding

e Virtual queues Y *(¢) and auxiliary variables 7% (¢).
e Initialize: Y*(0) = 0 for all k,n.

e Congestion Control: for each k and n, choose:
k(t) _ min {Qk nmax} Yk ) > Vnk(t)
0, otherwise
Yn(t) = argmax  Wgy(v) — Y, (t)
Y

s.t. O<fy<a

n,max

where W > 0 is control parameter affecting utility-delay tradeoff.

Based on chosen o (t) and v*(¢), transport layer queue updated as in (1)
and virtual queue updated as:

Y +1) = (Vi) — b)) + k)

e Caching and Forwarding: Same as VIP Algorithm above. Network layer
VIP count updated as in (2).



Joint Congestion Control, Caching and Forwarding

e Joint algorithm adaptively stabilizes all VIP queues for any A inside or
outside A, without knowing .

e Users need not know utility functions and demand rates of other users.

Theorem 3 For an arbitrary IP arrival rate A and for any W > 0,
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Numerical Experiments

Abilene Topology GEANT Topology

CONSUMER'’s



Network Parameters

e Abilene: 5000 objects, cache size 5G' B (1000 objects), link capacity 500
Mb/s; all nodes generate requests and can be data sources.

e GEANT: 2000 objects, cache size 2G'B (400 objects), link capacity 200
Mb/s; all nodes generate requests and can be sources.

e Fat Tree: 1000 objects, cache size 1GB (200 objects); CONSUMER
nodes generate requests; REPOs are source nodes.

e Wireless Backhaul: 500 objects, cache size 100/ B (20 objects), link ca-
pacity 500/ b/s; CONSUMER nodes generate requests; REPO is source
node.



Numerical Experiments: Caching and Forwarding

e Arrival Process: |Ps arrive according to Poisson process with same rate.
e Content popularity follows Zipf (0.75).

e Interest Packet size = 125B; Chunk size = 50KB; Object size = 5MB.

e Baselines:

Caching Decision: LCE/LCD/LFU/AGE-BASED
Caching Replacement: LRU/BIAS/UNIF/LFU/AGE-BASED
Forwarding: Shortest path and Potential-Based Forwarding



Numerical Experiments: Delay Performance
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Numerical Experiments:

Abilene 5000 Objects — Cache Hits
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Cache Hit Performance

GEANT 2000 Objects — Cache Hits
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Numerical Experiments: Congestion Control

e a-fair utility functions with a = 1 (proportionally fair), a =2, @ —
(max-min fair).

e Utility-delay comparison of Stable Caching VIP Algorithm with Conges-
tion Control with AIMD Window-base congestion control with PIT-based
forwarding and LRU caching (Carofiglio et al. 2013).



Network Parameters

e Abilene: 500 objects, cache size 500 M B (100 objects), link capacity
500 Mb/s; all nodes generate requests and can be data sources.

e Fat Tree: 1000 objects, cache size 1GB (200 objects); CONSUMER
nodes generate requests, REPOs are source nodes.

e Wireless Backhaul: 200 objects, cache size 100M B (20 objects), link
capacity 500 Mb/s; CONSUMER nodes generate requests, REPO is

source node.



Numerical Experiments: Comparison with AIMD
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Conclusions

e General VIP framework for caching, forwarding and congestion control.

e Distributed caching, forwarding, congestion control algorithms which max-
imize aggregate utility subject to network layer stability.

e Content-centric congestion control enables fairness among content types.

e Experimental results: superior performance in user delay, rate of cache
hits, utility-delay tradeoff.

e VIP algorithms have flexible implementation wrt to caching, forwarding,
congestion control.



